Application of Machine Learning Analyses Using Clinical and [18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer

被引:0
|
作者
Kodai Kawaji
Masatoyo Nakajo
Yoshiaki Shinden
Megumi Jinguji
Atsushi Tani
Daisuke Hirahara
Ikumi Kitazono
Takao Ohtsuka
Takashi Yoshiura
机构
[1] Kagoshima University,Department of Radiology
[2] Graduate School of Medical and Dental Sciences,Department of Digestive Surgery, Breast and Thyroid Surgery
[3] Kagoshima University,Department of Pathology
[4] Graduate School of Medical and Dental Sciences,undefined
[5] Department of Management Planning Division,undefined
[6] Harada Academy,undefined
[7] Kagoshima University,undefined
[8] Graduate School of Medical and Dental Sciences,undefined
来源
Molecular Imaging and Biology | 2023年 / 25卷
关键词
Breast cancer; [; F]-FDG; PET/CT; Machine learning; Prognosis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:923 / 934
页数:11
相关论文
共 50 条
  • [1] Application of Machine Learning Analyses Using Clinical and [18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer
    Kawaji, Kodai
    Nakajo, Masatoyo
    Shinden, Yoshiaki
    Jinguji, Megumi
    Tani, Atsushi
    Hirahara, Daisuke
    Kitazono, Ikumi
    Ohtsuka, Takao
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2023, 25 (05) : 923 - 934
  • [2] Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer
    Nakajo, Masatoyo
    Jinguji, Megumi
    Tani, Atsushi
    Kikuno, Hidehiko
    Hirahara, Daisuke
    Togami, Shinichi
    Kobayashi, Hiroaki
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2021, 23 (05) : 756 - 765
  • [3] Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer
    Masatoyo Nakajo
    Megumi Jinguji
    Atsushi Tani
    Hidehiko Kikuno
    Daisuke Hirahara
    Shinichi Togami
    Hiroaki Kobayashi
    Takashi Yoshiura
    Molecular Imaging and Biology, 2021, 23 : 756 - 765
  • [4] [18F]FDG-PET/CT results predict outcome in breast cancer
    Sollini, M.
    Zangheri, B.
    Calabrese, L.
    Di Paolo, M.
    Versari, A.
    Gasparini, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 : S623 - S623
  • [5] The Usefulness of Machine Learning–Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer
    Masatoyo Nakajo
    Kodai Kawaji
    Hiromi Nagano
    Megumi Jinguji
    Akie Mukai
    Hiroshi Kawabata
    Atsushi Tani
    Daisuke Hirahara
    Masaru Yamashita
    Takashi Yoshiura
    Molecular Imaging and Biology, 2023, 25 : 303 - 313
  • [6] In-vivo tumour characterization of breast cancer using [18F]FDG-PET/CT and supervised machine-learning
    Papp, L.
    Nakuz, T.
    Magometschnigg, H.
    Grahovac, M.
    Helbich, T.
    Karanikas, G.
    Haug, A.
    Pinker, K.
    Beyer, T.
    Hacker, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S414 - S414
  • [7] Combining [18F]FDG PET/CT with machine learning can predict neoadjuvant therapy failure in breast cancer patients
    Giovannini, E.
    Bachi, C.
    Giovacchini, G.
    Milano, A.
    Aschele, C.
    Yosifov, N.
    Ciarmiello, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S482 - S483
  • [8] [18F]FDG-PET/MRI in Breast Cancer
    Argalia, G.
    Fringuelli, F. M.
    Biscontini, G.
    Palucci, A.
    Romagnolo, C.
    Cottignoli, C.
    Ercolani, P.
    Simonetti, B. F.
    Gradassi, S. Borgoforte
    Burroni, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S475 - S475
  • [9] The Usefulness of Machine Learning-Based Evaluation of Clinical and Pretreatment [18F]-FDG-PET/CT Radiomic Features for Predicting Prognosis in Hypopharyngeal Cancer
    Nakajo, Masatoyo
    Kawaji, Kodai
    Nagano, Hiromi
    Jinguji, Megumi
    Mukai, Akie
    Kawabata, Hiroshi
    Tani, Atsushi
    Hirahara, Daisuke
    Yamashita, Masaru
    Yoshiura, Takashi
    MOLECULAR IMAGING AND BIOLOGY, 2023, 25 (02) : 303 - 313
  • [10] Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict for recurrence and suvival in cervical cancer
    Leisser, Asha
    Grahovac, Marko
    Papp, Laszlo
    Nakuz, Thomas
    Hacker, Marcus
    Beyer, Thomas
    Nejabat, Marzieh
    Haug, Alexander
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59