Gradient Estimates for the Heat Semigroup on H-Type Groups

被引:0
作者
Jun-Qi Hu
Hong-Quan LI
机构
[1] Shanghai University of Finance and Economics,Department of Applied Mathematics
[2] Fudan University,School of Mathematics Science
来源
Potential Analysis | 2010年 / 33卷
关键词
Gradient estimates; Heat semigroup; Heisenberg type groups; 58J35 (35B45);
D O I
暂无
中图分类号
学科分类号
摘要
By utilizing the Poincaré inequality and representation formulae, it is shown that on the Heisenberg type group, ℍ(2n, m), there exists a constant C > 0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |\nabla e^{t \Delta} f|(g) \leq C e^{t \Delta}(|\nabla f|)(g), \quad \forall g \in \mathbb{H}(2n, m), t > 0, f \in C_o^{\infty}(\mathbb{H}(2n, m)). $$\end{document}
引用
收藏
页码:355 / 386
页数:31
相关论文
共 38 条
  • [1] Auscher P(2004)Riesz transform on manifolds and heat kernel regularity Ann. Sci. École Norm. Sup. 37 911-957
  • [2] Coulhon T(1986)Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète C. R. Acad. Sci. Paris Sér. I Math. 303 23-26
  • [3] Duong XT(2008)On gradient bounds for the heat kernel on the Heisenberg group J. Funct. Anal. 255 1905-1938
  • [4] Hofmann S(2009)The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds Math. Z. 263 647-672
  • [5] Bakry D(2004)Nonlinear Liouville theorems for some critical problems on H-type groups J. Funct. Anal. 207 161-215
  • [6] Bakry D(1996)About Riesz transforms on the Heisenberg groups Math. Ann. 305 369-379
  • [7] Baudoin F(2004)Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformées de Riesz Arch. Math. 83 229-242
  • [8] Bonnefont M(2005)Melcher, hypoelliptic heat kernel inequalities on the Heisenberg group J. Funct. Anal. 221 340-365
  • [9] Chafaï D(2010)Gradient estimates for the subelliptic heat kernel on H-type groups J. Funct. Anal. 258 504-533
  • [10] Baudoin F.(2009)Precise estimates for the subelliptic heat kernel on H-type groups J. Math. Pures. Appl. 92 52-85