Rank Reduction of Oriented Graphs by Vertex and Edge Deletions

被引:0
作者
Syed M. Meesum
Saket Saurabh
机构
[1] HBNI,Institute of Mathematical Sciences
[2] University of Bergen,undefined
来源
Algorithmica | 2018年 / 80卷
关键词
Oriented graph; Rank of skew-adjacency matrix; Vertex deletion; Edge deletion; Fixed parameter tractable; Parameterized complexity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we continue our study of graph modification problems defined by reducing the rank of the adjacency matrix of the given graph, and extend our results from undirected graphs to modifying the rank of skew-adjacency matrix of oriented graphs. An instance of a graph modification problem takes as input a graph G and a positive integer k, and the objective is to either delete k vertices/edges or edit k edges so that the resulting graph belongs to a particular family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}$$\end{document} of graphs. Given a fixed positive integer r, we define Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_r$$\end{document} as the family of oriented graphs where for each G∈Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\in \mathcal{F}_r$$\end{document}, the rank of the skew-adjacency matrix of G is at most r. Using the family Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_r$$\end{document} we do algorithmic study, both in classical and parameterized complexity, of the following graph modification problems: r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Rank Vertex Deletion, r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Rank Edge Deletion. We first show that both the problems are NP-Complete. Then we show that these problems are fixed parameter tractable (FPT) by designing an algorithm with running time 2O(klogr)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal{O}(k \log r)}n^{\mathcal{O}(1)}$$\end{document} for r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Rank Vertex Deletion, and an algorithm for r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-Rank Edge Deletion running in time 2O(f(r)klogk)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal{O}(f(r) \sqrt{k} \log k )}n^{\mathcal{O}(1)}$$\end{document}. In addition to our FPT results we design polynomial kernels for these problems. Our main structural result, which is the fulcrum of all our algorithmic results, is that for a fixed integer r the size of any “reduced graph” in Fr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}_r$$\end{document} is upper bounded by 3r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^r$$\end{document}. This result is of independent interest and generalizes a similar result of Kotlov and Lovász regarding reduced oriented graphs of rank r.
引用
收藏
页码:2757 / 2776
页数:19
相关论文
共 53 条
[1]  
Abu-Khzam FN(2010)A kernelization algorithm for d-hitting set J. Comput. Syst. Sci. 76 524-531
[2]  
Bliznets I(2015)A subexponential parameterized algorithm for proper interval completion SIAM J. Discret. Math. 29 1961-1987
[3]  
Fomin FV(2015)Interval deletion is fixed-parameter tractable ACM Trans. Algorithms 11 21:1-21:35
[4]  
Pilipczuk M(2016)Chordal editing is fixed-parameter tractable Algorithmica 75 118-137
[5]  
Pilipczuk M(2012)Skew-adjacency matrices of graphs Linear Algebra Appl. 436 4512-4529
[6]  
Cao Y(2015)Exploring the subexponential complexity of completion problems ACM Trans Comput Theory (TOCT) 7 14-1447
[7]  
Marx D(2014)Tight bounds for parameterized complexity of cluster editing with a small number of clusters J. Comput. Syst. Sci. 80 1430-2216
[8]  
Cao Y(2013)Subexponential parameterized algorithm for minimum fill-in SIAM J. Comput. 42 2197-231
[9]  
Marx D(1998)A unified approximation algorithm for node-deletion problems Discret. Appl. Math. 86 213-1006
[10]  
Cavers M(2015)Faster parameterized algorithms for deletion to split graphs Algorithmica 71 989-189