Enveloping Algebras of the Nilpotent Malcev Algebra of Dimension Five

被引:0
作者
Murray R. Bremner
Hamid Usefi
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
[2] University of British Columbia,Department of Mathematics
来源
Algebras and Representation Theory | 2010年 / 13卷
关键词
Malcev algebras; Alternative algebras; Nonassociative algebras; Universal enveloping algebras; Representation theory; Differential operators; 17D10; 17A99; 17B35; 17B60; 17D05;
D O I
暂无
中图分类号
学科分类号
摘要
Pérez-Izquierdo and Shestakov recently extended the PBW theorem to Malcev algebras. It follows from their construction that for any Malcev algebra M over a field of characteristic ≠ 2, 3 there is a representation of the universal nonassociative enveloping algebra U(M) by linear operators on the polynomial algebra P(M). For the nilpotent non-Lie Malcev algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{M}$\end{document} of dimension 5, we use this representation to determine explicit structure constants for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathbb{M})$\end{document}; from this it follows that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U(\mathbb{M})$\end{document} is not power-associative. We obtain a finite set of generators for the alternator ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I(\mathbb{M}) \subset U(\mathbb{M})$\end{document} and derive structure constants for the universal alternative enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(\mathbb{M}) = U(\mathbb{M})/I(\mathbb{M})$\end{document}, a new infinite dimensional alternative algebra. We verify that the map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\iota\colon \mathbb{M} \to A(\mathbb{M})$\end{document} is injective, and so \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{M}$\end{document} is special.
引用
收藏
页码:407 / 425
页数:18
相关论文
共 7 条
  • [1] Kuzmin E.N.(1968)Malcev algebras and their representations Algebra and Logic 7 48-69
  • [2] Kuzmin E.N.(1970)Malcev algebras of dimension five over a field of characteristic zero Algebra and Logic 9 416-421
  • [3] Malcev A.I.(1955)Analytic loops Mat. Sb. 36 569-576
  • [4] Pchelintsev S.V.(2003)Speciality of metabelian Malcev algebras Math. Notes 74 245-254
  • [5] Pérez-Izquierdo J.M.(2004)An envelope for Malcev algebras J. Algebra 272 379-393
  • [6] Shestakov I.P.(1961)Malcev algebras Trans. Amer. Math. Soc. 101 426-458
  • [7] Sagle A.A.(undefined)undefined undefined undefined undefined-undefined