Adaptive weighted least squares regression for subspace clustering
被引:0
|
作者:
Noura Bouhlel
论文数: 0引用数: 0
h-index: 0
机构:University of Sfax,REGIM: Research Groups in Intelligent Machines
Noura Bouhlel
Ghada Feki
论文数: 0引用数: 0
h-index: 0
机构:University of Sfax,REGIM: Research Groups in Intelligent Machines
Ghada Feki
Chokri Ben Amar
论文数: 0引用数: 0
h-index: 0
机构:University of Sfax,REGIM: Research Groups in Intelligent Machines
Chokri Ben Amar
机构:
[1] University of Sfax,REGIM: Research Groups in Intelligent Machines
[2] National Engineering School of Sfax (ENIS),undefined
来源:
Knowledge and Information Systems
|
2021年
/
63卷
关键词:
Least squares regression;
Regression;
Graph learning;
Spectral clustering;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this research paper, we consider the subspace clustering problem which aims at finding a low-dimensional representation of a high-dimensional data set. In particular, our central focus is upon the least squares regression based on which we elaborate an adaptive weighted least squares regression for subspace clustering. Compared to the least squares regression, we consider the data locality to adaptively select relevant and close samples and discard irrelevant and faraway ones. Additionally, we impose a weight matrix on the representation errors to adaptively highlight the meaningful features and minimize the effect of redundant/noisy ones. Finally, we also add a non-negativity constraint on the representation coefficients to enhance the graph interpretability. These interesting properties allow to build up a more informative and quality graph, thereby yielding very promising clustering results. Extensive experiments on synthetic and real databases demonstrated that our clustering method achieves consistently optimal results, compared to multiple clustering methods.
机构:
ASTAR, Inst High Performance Comp, Singapore 138632, SingaporeASTAR, Inst High Performance Comp, Singapore 138632, Singapore
Zhen, Liangli
Peng, Dezhong
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaASTAR, Inst High Performance Comp, Singapore 138632, Singapore
Peng, Dezhong
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
Chengdu Sobey Digital Technol Co Ltd, Chengdu 610041, Peoples R ChinaASTAR, Inst High Performance Comp, Singapore 138632, Singapore
Wang, Wei
Yao, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
Univ Birmingham, Sch Comp Sci, CERCIA, Birmingham B15 2TT, W Midlands, EnglandASTAR, Inst High Performance Comp, Singapore 138632, Singapore
机构:
S China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510641, Peoples R China
Wen, Wen
Hao, Zhifeng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Math Sci, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510641, Peoples R China
Hao, Zhifeng
Yang, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Math Sci, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Comp Sci & Engn, Guangzhou 510641, Peoples R China
机构:
Qufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China
Ren, Min
Zhao, Shengli
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China
Zhao, Shengli
Wang, Mingqiu
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R ChinaQufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China
Wang, Mingqiu
Zhu, Xinbei
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech Univ, Dept Comp Sci, Blacksburg, VA 24061 USAQufu Normal Univ, Sch Stat & Data Sci, Qufu 273165, Shandong, Peoples R China