Morphisms on EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras and their applications

被引:0
作者
Anatolij Dvurečenskij
Omid Zahiri
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký Univer.,Depart. Algebra Geom.
[3] University of Applied Science and Technology,undefined
关键词
-algebra; -algebra; -homomorphism; -morphism; Standard ; -morphism; Free ; -algebra; Weakly free ; -algebra; Categories of ; -algebras;
D O I
10.1007/s00500-018-3039-7
中图分类号
学科分类号
摘要
For a new class of algebras, called EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras, every idempotent element a determines an MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-algebra which is important for the structure of the EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebra. Therefore, instead of standard homomorphisms of EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras, we introduce EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-morphisms as a family of MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-homomorphisms from MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-algebras [0, a] into other ones. EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-morphisms enable us to study categories of EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras where objects are EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras and morphisms are special classes of EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-morphisms. The category is closed under product. In addition, we define free EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebras on a set X with respect to EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-morphisms. If X is finite, then a free EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebra on X is termwise equivalent to the free MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ MV}$$\end{document}-algebra on X. For an infinite set X, the same is true introducing a so-called weakly free EMV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ EMV}$$\end{document}-algebra.
引用
收藏
页码:7519 / 7537
页数:18
相关论文
共 15 条
[1]  
Chang CC(1958)Algebraic analysis of many valued logics Trans Am Math Soc 88 467-490
[2]  
Di Nola A(1999)Equational characterization of all varieties of MV-algebras J Algebra 221 463-474
[3]  
Lettieri A(2015)The semiring-theoretic approach to MV-algebras: a survey Fuzzy Sets Syst 281 134-154
[4]  
Di Nola A(2002)Pseudo MV-algebras are intervals in J Aust Math Soc 72 427-445
[5]  
Russo C(2005)-groups J Algebra 283 254-291
[6]  
Dvurečenskij A(2001)Generalized MV-algebras Mult Valued Log 6 193-215
[7]  
Galatos N(1986)Pseudo J Funct Anal 65 15-63
[8]  
Tsinakis C(2007)-algebras Soft Comput 11 847-853
[9]  
Georgescu G(1937)Interpretation of AF Trans Am Math Soc 41 375-481
[10]  
Iorgulescu A(1938)-algebras in Łukasiewicz sentential calculus Časopis pro pěstování matematiky a fysiky 67 1-25