Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles

被引:0
|
作者
Shengqiang Li
Yurong Yan
Liang Zhong
Ping Liu
Ye Sang
Wei Cheng
Shijia Ding
机构
[1] Chongqing Medical University,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Department of Laboratory Medicine
[2] the First Affiliated Hospital of Chongqing Medical University,Molecular Oncology and Epigenetics Laboratory
[3] Bioscience (Tianjin) Diagnostic Technology Co.Ltd,undefined
来源
Microchimica Acta | 2015年 / 182卷
关键词
Electrochemical biosensor; Immunosensor; Graphene; Single wall carbon nanotubes; Gold nanoparticles; Prolactin; Chitosan; Alkaline phosphatase;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a new kind of electrochemical immunoassay for the peptide hormone prolactin. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of graphene, single walled carbon nanotubes and gold nanoparticles (AuNPs) in a chitosan (CS) matrix. The graphene and the single wall carbon nanotubes were first placed on the GCE, and the AuNPs were then electrodeposited on the surface by cyclic voltammetry. This structure results in a comparably large surface for immobilization of the capturing antibody (Ab1). The modified electrode was used in a standard sandwich-type of immunoassay. The secondary antibody (Ab2) consisted of AuNPs with immobilized Ab2 and modified with biotinylated DNA as signal tags. Finally, alkaline phosphatase was bound to the biotinylated DNA-AuNPs-Ab2 conjugate via streptavidin chemistry. The enzyme catalyzes the hydrolysis of the α-naphthyl phosphate to form α-naphthol which is highly electroactive at an operating voltage as low as 180 mV (vs. Ag/AgCl). The resulting immunoassay exhibits high sensitivity, wide linear range (50 to 3200 pg∙mL‾1), low detection limit (47 pg∙mL‾1), acceptable selectivity and reproducibility. The assay provides a pragmatic platform for signal amplification and has a great potential for the sensitive determination of antigens other than prolactine.
引用
收藏
页码:1917 / 1924
页数:7
相关论文
共 50 条
  • [21] Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide
    Luyang Miao
    Lei Jiao
    Juan Zhang
    He Li
    Microchimica Acta, 2017, 184 : 169 - 175
  • [22] Electrochemical Morphine Sensing Using Gold Nanoparticles Modified Carbon Paste Electrode
    Atta, Nada F.
    Galal, Ahmed
    Azab, Shereen M.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (10): : 5066 - 5081
  • [23] Electrochemical determination of ajmalicine using glassy carbon electrode modified with gold nanoparticles
    Eda Mehmeti
    Dalibor M. Stanković
    Sudkate Chaiyo
    Ľubomir Švorc
    Astrid Ortner
    Kurt Kalcher
    Monatshefte für Chemie - Chemical Monthly, 2016, 147 : 1161 - 1166
  • [24] Electrochemical determination of ajmalicine using glassy carbon electrode modified with gold nanoparticles
    Mehmeti, Eda
    Stankovic, Dalibor M.
    Chaiyo, Sudkate
    Svorc, L'ubomir
    Ortner, Astrid
    Kalcher, Kurt
    MONATSHEFTE FUR CHEMIE, 2016, 147 (07): : 1161 - 1166
  • [25] Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan
    Xu, Wei
    Qing, Ying
    Chen, Shuai
    Chen, Jun
    Qin, Zhen
    Qiu, JingFu
    Li, ChaoRui
    MICROCHIMICA ACTA, 2017, 184 (09) : 3339 - 3347
  • [26] Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody
    Wang, Zhenzhen
    Shang, Kun
    Dong, Jing
    Cheng, Ziqiang
    Ai, Shiyun
    MICROCHIMICA ACTA, 2012, 179 (3-4) : 227 - 234
  • [27] Chemiluminescence immunoassay for the rapid and sensitive detection of antibody against porcine parvovirus by using horseradish peroxidase/detection antibody-coated gold nanoparticles as nanoprobes
    Zhou, Yuan
    Zhou, Tao
    Zhou, Rui
    Hu, Yonggang
    LUMINESCENCE, 2014, 29 (04) : 338 - 343
  • [28] An origami paper-based electrochemical immunoassay for theC-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles
    Boonkaew, Suchanat
    Chaiyo, Sudkate
    Jampasa, Sakda
    Rengpipat, Sirirat
    Siangproh, Weena
    Chailapakul, Orawon
    MICROCHIMICA ACTA, 2019, 186 (03)
  • [29] Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multiwalled carbon nanotubes and decorated with platinum nanoparticles
    Shobhita Singal
    Avanish K Srivastava
    Bhasker Gahtori
    Microchimica Acta, 2016, 183 : 1375 - 1384
  • [30] Fabrication of a gold nanoparticles decorated carbon nanotubes based novel modified electrode for the electrochemical detection of glucose
    Manesh, Kalayil Manian
    Kim, Jun Heon
    Santhosh, Padmanabhan
    Gopalan, Anantha Yengar
    Lee, Kwang-Pill
    Kang, Hee-Dong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (10) : 3365 - 3372