Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability

被引:0
|
作者
Congming Li
Yingshu Lü
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, CMA
[2] Shanghai Jiao Tong University,Shanghai
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Maximum principles; Laplacian; Fractional Laplacian; Critical integrability; 35B50; 35D30; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
引用
收藏
相关论文
共 50 条
  • [41] Semilinear elliptic equations for the fractional Laplacian involving critical exponential growth
    de Souza, Manasses
    Araujo, Yane Lisley
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1757 - 1772
  • [42] Existence and multiplicity of positive solutions for a class of critical fractional Laplacian systems
    Echarghaoui, Rachid
    Khouakhi, Moussa
    Masmodi, Mohamed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 813 - 835
  • [43] Fractional Brownian motion via fractional laplacian
    Bojdecki, T
    Gorostiza, LG
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (01) : 107 - 108
  • [44] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Qingwei Duan
    Lifeng Guo
    Binlin Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [45] Positive solutions for the fractional Laplacian in the almost critical case in a bounded domain
    Figueiredo, Giovany M.
    Siciliano, Gaetano
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 89 - 100
  • [46] The fractional Laplacian has infinite dimension
    Spener, Adrian
    Weber, Frederic
    Zacher, Rico
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (01) : 57 - 75
  • [47] An Example of the Generalized Fractional Laplacian on Rn
    Li, Chenkuan
    CONTEMPORARY MATHEMATICS, 2020, 1 (04): : 215 - 226
  • [48] WAVE EXTENSION PROBLEM FOR THE FRACTIONAL LAPLACIAN
    Kemppainen, Mikko
    Sjogren, Peter
    Luis Torrea, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (10) : 4905 - 4929
  • [49] LOCAL ENERGY ESTIMATES FOR THE FRACTIONAL LAPLACIAN
    Borthagaray, Juan Pablo
    Leykekhman, Dmitriy
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 1918 - 1947
  • [50] OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN
    Qiu, Chong
    Huang, Yisheng
    Zhou, Yuying
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,