Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability

被引:0
|
作者
Congming Li
Yingshu Lü
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, CMA
[2] Shanghai Jiao Tong University,Shanghai
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Maximum principles; Laplacian; Fractional Laplacian; Critical integrability; 35B50; 35D30; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
引用
收藏
相关论文
共 50 条
  • [31] Fractional Laplacian with Hardy potential
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Jakubowski, Tomasz
    Pilarczyk, Dominika
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (01) : 20 - 50
  • [32] A variable diffusivity fractional Laplacian
    Ervin, V. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (01)
  • [33] Variational Inequalities for the Fractional Laplacian
    Roberta Musina
    Alexander I. Nazarov
    Konijeti Sreenadh
    Potential Analysis, 2017, 46 : 485 - 498
  • [34] Variational Inequalities for the Fractional Laplacian
    Musina, Roberta
    Nazarov, Alexander I.
    Sreenadh, Konijeti
    POTENTIAL ANALYSIS, 2017, 46 (03) : 485 - 498
  • [35] Fractional Laplacian in conformal geometry
    Chang, Sun-Yung Alice
    del Mar Gonzalez, Maria
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1410 - 1432
  • [36] RESONANT PROBLEMS FOR FRACTIONAL LAPLACIAN
    Chen, Yutong
    Su, Jiabao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) : 163 - 187
  • [37] Exact discretization of fractional Laplacian
    Tarasov, Vasily E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (05) : 855 - 863
  • [38] Existence and multiplicity of positive solutions for a class of critical fractional Laplacian systems
    Rachid Echarghaoui
    Moussa Khouakhi
    Mohamed Masmodi
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 813 - 835
  • [39] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Duan, Qingwei
    Guo, Lifeng
    Zhang, Binlin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [40] Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
    Tao, Mengfei
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1332 - 1351