Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability

被引:0
|
作者
Congming Li
Yingshu Lü
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, CMA
[2] Shanghai Jiao Tong University,Shanghai
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Maximum principles; Laplacian; Fractional Laplacian; Critical integrability; 35B50; 35D30; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
引用
收藏
相关论文
共 50 条
  • [1] Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability
    Li, Congming
    Lue, Yingshu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [2] The maximum principles for fractional Laplacian equations and their applications
    Cheng, Tingzhi
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
  • [3] Maximum principles, Liouville theorem and symmetry results for the fractional g-Laplacian
    Molina, Sandra
    Salort, Ariel
    Vivas, Hernan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212
  • [4] SPECTRUM OF POLY-LAPLACIAN AND FRACTIONAL LAPLACIAN
    Zeng, Lingzhong
    DIFFERENTIAL GEOMETRY OF SUBMANIFOLDS AND ITS RELATED TOPICS, 2014, : 164 - 179
  • [5] A fractional Laplacian problem with critical nonlinearity
    Long, Xiuhong
    Wang, Jixiu
    AIMS MATHEMATICS, 2021, 6 (08): : 8415 - 8425
  • [6] On a critical nonlinear problem involving the fractional Laplacian
    Alghanemi, Azeb
    Chtioui, Hichem
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (09)
  • [7] Fractional Laplacian equations with critical Sobolev exponent
    Raffaella Servadei
    Enrico Valdinoci
    Revista Matemática Complutense, 2015, 28 : 655 - 676
  • [8] Fractional Laplacian equations with critical Sobolev exponent
    Servadei, Raffaella
    Valdinoci, Enrico
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (03): : 655 - 676
  • [9] SINGULAR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN
    Wang, Xueqiao
    Yang, Jianfu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [10] The trace fractional Laplacian and the mid-range fractional Laplacian
    Rossi, Julio D.
    Ruiz-Cases, Jorge
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 247