Irreducible representations of simple Lie algebras by differential operators

被引:0
作者
A. Morozov
M. Reva
N. Tselousov
Y. Zenkevich
机构
[1] ITEP,
[2] IITP,undefined
[3] MIPT,undefined
[4] ITMP,undefined
[5] SISSA,undefined
[6] INFN,undefined
[7] Sezione di Trieste,undefined
[8] IGAP,undefined
来源
The European Physical Journal C | 2021年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe a systematic method to construct arbitrary highest-weight modules, including arbitrary finite-dimensional representations, for any finite dimensional simple Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document}. The Lie algebra generators are represented as first order differential operators in 12dimg-rankg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2} \left( \dim {\mathfrak {g}} - \text {rank} \, {\mathfrak {g}}\right) $$\end{document} variables. All rising generators e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{e}$$\end{document} are universal in the sense that they do not depend on representation, the weights enter (in a very simple way) only in the expressions for the lowering operators f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{f}$$\end{document}. We present explicit formulas of this kind for the simple root generators of all classical Lie algebras.
引用
收藏
相关论文
共 24 条
[1]  
Ding J(1997)Generalization and deformation of Drinfeld quantum affine algebras Lett. Math. Phys. 41 181-193
[2]  
Iohara K(2007)TheMacMahon J. Math. Phys. 48 123520-385
[3]  
Miki K(2019)-matrix JHEP 04 097-2584
[4]  
Awata H(2018)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces JHEP 03 192-2589
[5]  
Awata H(2017)Generalized Knizhnik–Zamolodchikov equation for Ding–Iohara–Miki algebra Phys. Rev. D 96 026021-451
[6]  
Awata H(2016)Explicit examples of DIM constraints for network matrix models JHEP 07 103-208
[7]  
Awata H(2016)Toric Calabi–Yau threefolds as quantum integrable systems. JHEP 10 047-57
[8]  
Awata H(2017)-matrix and Nucl. Phys. B 918 358-undefined
[9]  
Awata H(1997) relations Int. J. Mod. Phys. A 12 2523-undefined
[10]  
Gerasimov A(1990)Anomaly in RTT relation for DIM algebra and network matrix models Int. J. Mod. Phys. A 5 2495-undefined