Mixed Product of Hankel and Toeplitz Operators on Fock—Sobolev Spaces

被引:0
作者
Jie Qin
Xiao Feng Wang
机构
[1] Guangzhou University,School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute
来源
Acta Mathematica Sinica, English Series | 2020年 / 36卷
关键词
Toeplitz operators; Hankel operators; Fock—Sobolev space; 47B35; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be functions in Fock—Sobolev space F2,m. In this paper, we completely characterize the boundedness and compactness of Hf−Tg−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\mathop f\limits^ - }}{T_{\mathop g\limits^ - }}$$\end{document}.
引用
收藏
页码:1245 / 1255
页数:10
相关论文
共 20 条
  • [1] Aleman A(2016)Sarason’s conjecture on the Bergman space International Mathematics Research Notices 14 4320-4349
  • [2] Pott S(2018)Sarason’s Toeplitz product problem on the Fock-Sobolev space Acta Mathematica Sinica, English Series 34 288-296
  • [3] Reguera C(2014)Linear combinations of composition operators on the Fock-Sobolev spaces Potential Analysis 41 1223-1246
  • [4] Chen J J(2014)Products of Toeplitz operators on the Fock space Proc. Amer. Math. Soc. 142 2483-2489
  • [5] Wang X F(2012)Fock-Sobolev spaces and their Carleson measures J. Funct. Anal. 263 2483-2506
  • [6] Xia J(2019)Products of Hankel operators on the Fock space J. Funct. Anal. 277 2644-2663
  • [7] Cho H R(1999)Products of Hankel and Toeplitz operators on the Bergman space J. Funct. Anal. 169 289-313
  • [8] Choe B R(1996)The distribution function inequality and products of Toeplitz operators and Hankel operators J. Funct. Anal. 138 477-501
  • [9] Koo H(undefined)undefined undefined undefined undefined-undefined
  • [10] Cho H R(undefined)undefined undefined undefined undefined-undefined