Phase Retrievable Projective Representation Frames for Finite Abelian Groups

被引:0
作者
Lan Li
Ted Juste
Joseph Brennan
Chuangxun Cheng
Deguang Han
机构
[1] Xi’an Shiyou University,School of Science
[2] University of Central Florida,Department of Mathematics
[3] Nanjing University,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2019年 / 25卷
关键词
Phase retrieval; Frames; Group representations; Primary 42C15; 46C05; 20C25; 20K01;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of characterizing projective representations that admit frame vectors with the maximal span property, a property that allows for an algebraic recovering for the phase-retrieval problem. For a given multiplier μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of a finite abelian group G, we show that the representation dimension of any irreducible μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-projective representation of G is exactly the rank of the symmetric multiplier matrix associated with μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. With the help of this result we are able to prove that every irreducible μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-projective representation of a finite abelian group G admits a frame vector with the maximal span property, and obtain a complete characterization for all such frame vectors. Consequently the complement of the set of all the maximal span frame vectors for any projective unitary representation of any finite abelian group is Zariski-closed. These generalize some of the recent results about phase-retrieval with Gabor (or STFT) measurements.
引用
收藏
页码:86 / 100
页数:14
相关论文
共 62 条
[1]  
Alexeev B(2014)Phase retrieval with polarization SIAM J. Imaging Sci. 7 35-66
[2]  
Bandeira AS(1972)Projective representations of Abelian groups Proc. Am. Math. Soc. 36 260-266
[3]  
Fickus M(2015)Invertibility and robustness of phaseless reconstruction Appl. Comput. Harmon. Anal. 38 469-488
[4]  
Mixon DG(2016)On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem Linear Algebra Appl. 496 152-181
[5]  
Backhouse NB(2006)On signal reconstruction without phase Appl. Comput. Harmon. Anal. 20 345-356
[6]  
Bradley CJ(2007)Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem IEEE Signal Process. Lett. 14 341-345
[7]  
Balan R(2009)Painless reconstruction from magnitudes of frame vectors J. Fourier Anal. Appl. 15 488-501
[8]  
Wang Y(2014)Saving phase: injectivity and stability for phase retrieval Appl. Comput. Harmon. Anal. 37 106-125
[9]  
Balan R(2014)Phase retrieval from power spectra of masked signals Inf. Inference 3 83-102
[10]  
Zou D(2015)Stable phase retrieval with low-redundancy frames Adv. Comput. Math. 41 317-33