Minimal elements related to a conditional expectation in a C*-algebra

被引:0
作者
Ying Zhang
Lining Jiang
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Minimal elements; Conditional expectation; Positive modification; The unilateral shift; The backward shift; 47A58; 47A30; 46L05;
D O I
暂无
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} be a C*-algebra and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} a C*-subalgebra of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} such that there is a conditional expectation from A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} onto it. Using the property of positive modification, this paper characterizes an element a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathcal {A}}$$\end{document} satisfying ‖a‖=inf{‖a+b‖:b∈B}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert a\Vert =\inf \{\Vert a+b\Vert : b\in {\mathcal {B}}\}. \end{aligned}$$\end{document}Such an a is called B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}-minimal. As an application of these results it is shown that both the unilateral shift and the backward shift are D(B(l2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(B(l^2))$$\end{document}-minimal, where D(B(l2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(B(l^2))$$\end{document} is the set of diagonal operators in B(l2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(l^2)$$\end{document}, and thus provides new examples of minimal operators which are neither hermitian nor compact.
引用
收藏
相关论文
共 33 条
  • [1] Andruchow E(2010)The rectifiable distance in the unitary Fredholm group Stud. Math. 196 151-178
  • [2] Larotonda G(2009)Minimal matrices and the corresponding minimal curves on flag manifolds in low dimension Linear Algebra Appl. 430 1906-1928
  • [3] Andruchow E(2012)A characterization of minimal Hermitian matrices Linear Algebra Appl. 436 2366-2374
  • [4] Mata-Lorenzo LE(2021)Best approximation by diagonal operators in Schatten ideals Linear Algebra Appl. 620 1-26
  • [5] Mendoza A(2013)Best approximation by diagonal compact operators Linear Algebra Appl. 439 3044-3056
  • [6] Recht L(2016)Minimal length curves in unitary orbits of a Hermitian compact operator Differ. Geom. Appl. 45 1-22
  • [7] Varela A(2004)Metric geometry in homogeneous spaces of the unitary group of a C*-algebra: part I-minimal curves Adv. Math. 184 342-366
  • [8] Andruchow E(2017)On best uniform approximation by low-rank matrices Linear Algebra Appl. 518 159-176
  • [9] Larotonda G(2017)Concrete minimal 3 Demonstr. Math. 50 330-350
  • [10] Recht L(2018)3 Hermitian matrices and some general cases Linear Algebra Appl. 549 233-245