Well-posedness, theoretical and numerical stability results of a memory-type porous thermoelastic system

被引:0
作者
Adel M. Al-Mahdi
Mohammad Kafini
Jamilu Hashim Hassan
Mohamed Alahyane
机构
[1] King Fahd University of Petroleum and Minerals,The Preparatory Year Program
[2] King Fahd University of Petroleum and Minerals,The Interdisciplinary Research Center in Construction and Building Materials
[3] King Fahd University of Petroleum and Minerals,Department of Mathematics
[4] Bayero University Kano,Arts et Metiers Institute of Technology, Centrale Lille, Junia, ULR2697
[5] University of Lille, L2EP
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Thermoelastic; Porous system; Existence; General decay; Convex functions; Finite difference; Crank–Nicolson; Euler method; 35B35; 35B40; 35L05; 93D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a one-dimensional thermoelastic porous system with memory effect. We establish the existence and uniqueness result using the Faedo Galerkin approximations method. Then, we prove a general decay result under a very general assumption on the relaxation function and for suitable initial data with enough regularities. In order to validate our theoretical results, we discretize our system using hybrid numerical scheme and we present several numerical experiments and tests.
引用
收藏
相关论文
共 29 条
[1]  
Goodman M(1972)A continuum theory for granular materials Arch. Ration. Mech. Anal. 44 249-266
[2]  
Cowin S(1979)A nonlinear theory of elastic materials with voids Arch. Ration. Mech. Anal. 72 175-201
[3]  
Nunziato JW(2007)A theory of porous thermoviscoelastic mixtures J. Therm. Stresses 30 693-714
[4]  
Cowin SC(2016)On porous-elastic system with localized damping Z. Angew. Math. Phys. 67 63-77
[5]  
Ieşan D(2012)Exponential decay in non-uniform porous-thermo-elasticity model of Lord–Shulman type Discrete Contin. Dyn. Syst. B 17 57-2507
[6]  
Quintanilla R(2013)Decay property of regularity-loss type of solutions in elastic solids with voids Appl. Anal. 92 2487-6906
[7]  
Santos M(2011)General decay for a porous thermoelastic system with memory: the case of equal speeds Nonlinear Anal. Theory Methods Appl. 74 6895-40
[8]  
Júnior DA(2013)General decay for a porous-thermoelastic system with memory: the case of nonequal speeds Acta Math. Sci. 33 23-464
[9]  
Han Z-J(2008)Energy decay for porous-thermo-elasticity systems of memory type Appl. Anal. 87 451-471
[10]  
Xu G-Q(2019)General decay of solutions in one-dimensional porous-elastic system with memory J. Math. Anal. Appl. 469 457-322