Berezin Transform, Mellin Transform and Toeplitz Operators

被引:0
作者
Željko Čučković
Bo Li
机构
[1] University of Toledo,Department of Mathematics
来源
Complex Analysis and Operator Theory | 2012年 / 6卷
关键词
Berezin transform; Mellin transform; Bergman spaces; Toeplitz operators; Primary 47B35; Secondary 32A36;
D O I
暂无
中图分类号
学科分类号
摘要
We consider functions of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_1\bar g_1+h}$$\end{document} in the range of the Berezin transform B, where f1 and g1 are holomorphic on the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}, and h is either harmonic or of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f_2\bar g_2}$$\end{document} for some holomorphic functions f2 and g2 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb D}$$\end{document}. First, by using the Mellin transform, we complement Ahern’s Theorem (Ahern in J Funct Anal 215:206–216, 2004) by proving that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in L^1}$$\end{document} and B(u) is harmonic, then u is harmonic. Secondly, we extend Ahern’s Theorem when h is harmonic, and give very precise relations between f1 and f2, g1 and g2 when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h=f_2\bar g_2}$$\end{document} and g2(z) = zn with n ≥ 1. Finally, some applications of our results to the theory of Toeplitz operators are discussed.
引用
收藏
页码:189 / 218
页数:29
相关论文
共 22 条
[1]  
Ahern P.(2004)On the range of the Berezin transform J. Funct. Anal. 215 206-216
[2]  
Ahern P.(2001)A theorem of Brown-Halmos type for Bergman space Toeplitz operators J. Funct. Anal. 187 200-210
[3]  
Čučković Ž.(2004)Some examples related to the Brown–Halmos theorem for the Bergman space Acta Sci. Math. (Szeged) 70 373-378
[4]  
Ahern P.(1993)An invariant volume-mean-value property J. Funct. Anal. 111 380-397
[5]  
Čučković Ž.(1988)Bergman spaces and their operators Pitman Res. Notes Math. Ser. 171 1-50
[6]  
Ahern P.(1991)Commuting Toeplitz operators with harmonic symbols Integral Equ. Oper. Theory 14 1-12
[7]  
Flores M.(2009)Finite sums of Toeplitz products on the polydisk Potential Anal. 31 227-255
[8]  
Rudin W.(2008)Sums of Toeplitz products with harmonic symbols Rev. Mat. Iberoam. 24 43-70
[9]  
Axler S.(2003)Berezin versus Mellin J. Math. Anal. Appl. 287 234-243
[10]  
Axler S.(1998)Mellin transform, monomial symbols, and commuting Toeplitz operators J. Funct. Anal. 154 195-214