A fast eigenvalue approach for solving the trust region subproblem with an additional linear inequality

被引:0
作者
M. Salahi
A. Taati
机构
[1] University of Guilan,Faculty of Mathematical Sciences
来源
Computational and Applied Mathematics | 2018年 / 37卷
关键词
Extended trust region subproblem; Lagrangian dual; Eigenvalue problem; Relaxation; 90C26; 90C22; 65F15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the extended trust region subproblem (eTRS) in which the trust region intersects the Euclidean ball with a single linear inequality constraint. By reformulating the Lagrangian dual of eTRS as a two-parameter linear eigenvalue problem, we state a necessary and sufficient condition for its strong duality in terms of an optimal solution of a linearly constrained bivariate concave maximization problem. This results in an efficient algorithm for solving eTRS of large size whenever the strong duality is detected. Finally, some numerical experiments are given to show the effectiveness of the proposed method.
引用
收藏
页码:329 / 347
页数:18
相关论文
共 39 条
[1]  
Ai W(2009)Strong duality for the CDT subproblem: a necessary and sufficient condition SIAM J Optim 19 1735-1756
[2]  
Zhang S(2006)Strong duality in nonconvex quadratic optimization with two quadratic constraints SIAM J Optim 17 844-860
[3]  
Beck A(2004)Robust linear optimization under general norms Oper Res Lett 32 510-516
[4]  
Eldar YC(2011)Theory and applications of robust optimization SIAM Rev 53 464-501
[5]  
Bertsimas D(2013)Second-order-cone constraints for extended trust-region subproblems SIAM J Optim 23 432-451
[6]  
Pachamanova D(2015)The trust region subproblem with non-intersecting linear constraints Math Program 149 253-264
[7]  
Sim M(1995)An efficient trust region method for unconstrained discrete-time optimal control problems Comput Optim Appl 4 47-66
[8]  
Bertsimas D(1986)A second-order algorithm for continuous-time nonlinear optimal control problems IEEE Trans Automat Contr 31 673-676
[9]  
Brown D(2004)The trust region subproblem and semidefinite programming Optim Methods Softw 19 41-67
[10]  
Caramanis C(1999)Solving the trust-region subproblem using the Lanczos method SIAM J Optim 9 504-525