Multiscale Modelling and Analysis of Signalling Processes in Tissues with Non-Periodic Distribution of Cells

被引:3
作者
Ptashnyk M. [1 ]
机构
[1] Department of Mathematics, University of Dundee
基金
英国工程与自然科学研究理事会;
关键词
Domains with non-periodic perforations; Locally periodic homogenization; Non-periodic microstructures; Plywood-like microstructures; Signalling processes; Unfolding operator;
D O I
10.1007/s10013-016-0232-9
中图分类号
学科分类号
摘要
In this paper, a microscopic model for a signalling process in the left ventricular wall of the heart, comprising a non-periodic fibrous microstructure, is considered. To derive the macroscopic equations, the non-periodic microstructure is approximated by the corresponding locally periodic microstructure. Then, applying the methods of locally periodic homogenization (the locally periodic (l-p) unfolding operator, locally periodic two-scale (l-t-s) convergence on oscillating surfaces and l-p boundary unfolding operator), we obtain the macroscopic model for a signalling process in the heart tissue. © 2016, The Author(s).
引用
收藏
页码:295 / 316
页数:21
相关论文
共 35 条
[21]  
Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasi-Linear Equations of Parabolic Type, (1968)
[22]  
Marciniak-Czochra A., Ptashnyk M., Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal., 40, pp. 215-237, (2008)
[23]  
Mascarenhas M.L., Polisevski D., The warping, the torsion and the Neumann problems in a quasi-periodically perforated domain, RAIRO Modél Math. Anal. Numér., 28, pp. 37-57, (1994)
[24]  
Mascarenhas M.L., Ciarlet P.G., Trabucho L., Viano J., Homogenization problems in locally periodic perforated domains, Asymptotic Methods for Elastic Structures: Proceedings of the International Conference, Lisbon, Portugal, 1993, pp. 141-149, (1995)
[25]  
Matache A.-M., Schwab C., Two-scale FEM for homogenisation problems, ESAIM: M2AN, 36, pp. 537-572, (2002)
[26]  
McCulloch A.D., Bronzino J., Cardiac biomechanics, The Biomedical Engineering Handbook. 2nd edn. Chapter, (2000)
[27]  
Meier S.A., Two-scale models of reactive transport in porous media involving microstructural changes, (2008)
[28]  
Nguetseng G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, pp. 608-623, (1989)
[29]  
Peskin C.S., Fiber architecture of the left ventricular wall: An asymptotic analysis, Commun. Pure. Appl. Math., 42, pp. 79-113, (1989)
[30]  
Ptashnyk M., Two-scale convergence for locally-periodic microstructures and homogenization of plywood structures, SIAM Multiscale Model Simul., 11, pp. 92-117, (2013)