Multiscale Modelling and Analysis of Signalling Processes in Tissues with Non-Periodic Distribution of Cells

被引:3
作者
Ptashnyk M. [1 ]
机构
[1] Department of Mathematics, University of Dundee
基金
英国工程与自然科学研究理事会;
关键词
Domains with non-periodic perforations; Locally periodic homogenization; Non-periodic microstructures; Plywood-like microstructures; Signalling processes; Unfolding operator;
D O I
10.1007/s10013-016-0232-9
中图分类号
学科分类号
摘要
In this paper, a microscopic model for a signalling process in the left ventricular wall of the heart, comprising a non-periodic fibrous microstructure, is considered. To derive the macroscopic equations, the non-periodic microstructure is approximated by the corresponding locally periodic microstructure. Then, applying the methods of locally periodic homogenization (the locally periodic (l-p) unfolding operator, locally periodic two-scale (l-t-s) convergence on oscillating surfaces and l-p boundary unfolding operator), we obtain the macroscopic model for a signalling process in the heart tissue. © 2016, The Author(s).
引用
收藏
页码:295 / 316
页数:21
相关论文
共 35 条
[1]  
Abdulle A., The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., 31, pp. 133-181, (2009)
[2]  
Abdulle A., Weinan E., Engquist B., Vanden-Eijnden E., The heterogeneous multiscale method, Acta Numer., 21, pp. 1-87, (2012)
[3]  
Alexandre R., Homogenization and
[4]  
2 convergence, Proc. Roy. Soc. Edinb., 127A, pp. 441-455, (1997)
[5]  
Belhadj M., Cances E., Gerbeau J.-F., Mikelic A., Homogenization approach to filtration through a fibrous medium, INRIA, (2004)
[6]  
Belyaev A.G., Pyatnitskii A.L., Chechkin G.A., Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary, Sib. Math. J., 39, pp. 621-644, (1998)
[7]  
Briane M., Homogenéisation de matériaux fibrés et multi-couches. PhD thesis, Université Paris, (1990)
[8]  
Briane M., Three models of non periodic fibrous materials obtained by homogenization, RAIRO Modél Math. Anal. Numér., 27, pp. 759-775, (1993)
[9]  
Briane M., Homogenization of a non-periodic material, J. Math. Pures Appl., 73, pp. 47-66, (1994)
[10]  
Chavarria-Krauser A., Ptashnyk M., Homogenization approach to water transport in plant tissues with periodic microstructures, Math. Model. Nat. Phenom., 8, pp. 80-111, (2013)