Variance-constrained resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\infty }$\end{document} state estimation for time-varying neural networks with randomly varying nonlinearities and missing measurements

被引:0
作者
Yan Gao
Jun Hu
Dongyan Chen
Junhua Du
机构
[1] Harbin University of Science and Technology,School of Science
[2] Harbin University of Science and Technology,Heilongjiang Provincial Key Laboratory of Optimization Control and Intelligent Analysis for Complex Systems
[3] University of South Wales,School of Engineering
[4] Qiqihar University,Qiqihar College of Science
关键词
Time-varying neural networks; Resilient state estimation; Randomly varying nonlinearities; Missing measurements; performance; Variance constraint;
D O I
10.1186/s13662-019-2298-7
中图分类号
学科分类号
摘要
This paper addresses the resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\infty }$\end{document} state estimation problem under variance constraint for discrete uncertain time-varying recurrent neural networks with randomly varying nonlinearities and missing measurements. The phenomena of missing measurements and randomly varying nonlinearities are described by introducing some Bernoulli distributed random variables, in which the occurrence probabilities are known a priori. Besides, the multiplicative noise is employed to characterize the estimator gain perturbation. Our main purpose is to design a time-varying state estimator such that, for all missing measurements, randomly varying nonlinearities and estimator gain perturbation, both the estimation error variance constraint and the prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\infty }$\end{document} performance requirement are met simultaneously by providing some sufficient criteria. Finally, the feasibility of the proposed variance-constrained resilient H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{\infty }$\end{document} state estimation method is verified by some simulations.
引用
收藏
相关论文
共 180 条
  • [1] Zhang X.(2016)Survey on recent advances in networked control systems IEEE Trans. Ind. Inform. 12 1740-1752
  • [2] Han Q.(2019)Recursive state estimation for time-varying complex networks subject to missing measurements and stochastic inner coupling under random access protocol Neurocomputing 346 48-57
  • [3] Yu X.(2019)Observer-based synchronization of complex dynamical networks under actuator saturation and probabilistic faults IEEE Trans. Syst. Man Cybern. Syst. 49 1516-1526
  • [4] Zhang H.(2019)Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing Int. J. Geogr. Inf. Sci. 33 314-345
  • [5] Hu J.(2018)Global exponential stability of Markovian jumping stochastic impulsive uncertain BAM neural networks with leakage, mixed time delays, and alpha-inverse Holder activation functions Adv. Differ. Equ. 2018 154-165
  • [6] Liu H.(2018)Delay-dependent stability criteria for neutral-type neural networks with interval time-varying delay signals under the effects of leakage delay Adv. Differ. Equ. 2018 1111-1120
  • [7] Yu X.(2018)Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation Neural Netw. 105 263-274
  • [8] Liu F.(2015)Combined Neurocomputing 168 221-233
  • [9] Selvaraj P.(2015) and passivity state estimation of memristive neural networks with random gain fluctuations Inf. Sci. 296 1-19
  • [10] Sakthivel R.(2019)Design of state estimator for bidirectional associative memory neural networks with leakage delays Appl. Math. Comput. 340 74-83