Prediction of electronic work function of the second phase in binary magnesium alloy based on machine learning method

被引:0
作者
Xiaoxiu Wei
Jianfeng Wang
Chao Wang
Shijie Zhu
Liguo Wang
Shaokang Guan
机构
[1] Zhengzhou University,School of Materials Science and Engineering
来源
Journal of Materials Research | 2022年 / 37卷
关键词
Mg; Alloy; Second phases; Corrosion; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3792 / 3802
页数:10
相关论文
共 205 条
[31]  
Park SS(2016)Machine learning as a contributor to physics: understanding Mg alloys Surf. Sci. 50 17953-448
[32]  
Wang B(1996)Combinatorial screening for new materials in unconstrained composition space with machine learning Phys. Rev. B 77 3865-222
[33]  
Guan SK(1994)First-principles studies on structure stability, segregation, and work function of Mg doped with metal elements Phys. Rev. B 21 359-3942
[34]  
Wang J(1996)First-principles study of the structural and electronic properties of the clean and O-deficient ZnAl2O4(111) surfaces Phys. Rev. Lett. 168 321-153
[35]  
Wang LG(2020)First-principles study of the structural and electronic properties of the clean and O-deficient ZnAl2O4(111) surfaces Sci. Technol. Adv. Mater. 19 529-501
[36]  
Zhu SJ(2019)Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Acta Mater. 6 11634-146
[37]  
Kim WC(2015)Projector augmented-wave method Intell. Data Anal. 344 e4483-2830
[38]  
Kim JG(2018)Generalized gradient approximation made simple IEEE Access 30 87-177
[39]  
Lee JY(2012)Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach BMJ 31 437-undefined
[40]  
Seok HK(2011)Modern data analytics approach to predict creep of high-temperature alloys Quaest. Geogr. 14 199-undefined