Anticanonically balanced metrics on Fano manifolds

被引:0
作者
Louis IOOS
机构
[1] Max Planck Institute for Mathematics,
来源
Annals of Global Analysis and Geometry | 2022年 / 62卷
关键词
Berezin–Toeplitz quantization; Balanced metrics; Fano manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if a Fano manifold has discrete automorphism group and admits a polarized Kähler–Einstein metric, then there exists a sequence of anticanonically balanced metrics converging smoothly to the Kähler–Einstein metric. Our proof is based on a simplification of Donaldson’s proof of the analogous result for balanced metrics, replacing a delicate geometric argument by the use of Berezin–Toeplitz quantization. We then apply this result to compute the asymptotics of the optimal rate of convergence to the fixed point of Donaldson’s iterations in the anticanonical setting.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 50 条
[31]   Greatest lower bounds on the Ricci curvature of Fano manifolds [J].
Szekelyhidi, Gabor .
COMPOSITIO MATHEMATICA, 2011, 147 (01) :319-331
[32]   A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds [J].
Andreatta, Marco .
MILAN JOURNAL OF MATHEMATICS, 2009, 77 (01) :361-383
[33]   ON FANO MANIFOLDS WITH AN UNSPLIT DOMINATING FAMILY OF RATIONAL CURVES [J].
Novelli, Carla .
KODAI MATHEMATICAL JOURNAL, 2012, 35 (03) :425-438
[34]   Radial balanced metrics on the unit disk [J].
Greco, Antonio ;
Loi, Andrea .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (01) :53-59
[35]   Balanced Metrics and Noncommutative Kahler Geometry [J].
Lukic, Sergio .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[36]   A note on diastatic entropy and balanced metrics [J].
Mossa, Roberto .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 :492-496
[37]   Seshadri constants of the anticanonical divisors of Fano manifolds with large index [J].
Liu, Jie .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (12)
[38]   Quantum Periods for Certain Four-Dimensional Fano Manifolds [J].
Coates, Tom ;
Galkin, Sergey ;
Kasprzyk, Alexander ;
Strangeway, Andrew .
EXPERIMENTAL MATHEMATICS, 2020, 29 (02) :183-221
[40]   Real semisimple Lie groups and balanced metrics [J].
Giusti, Federico ;
Podesta, Fabio .
REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (02) :711-729