Anticanonically balanced metrics on Fano manifolds

被引:0
作者
Louis IOOS
机构
[1] Max Planck Institute for Mathematics,
来源
Annals of Global Analysis and Geometry | 2022年 / 62卷
关键词
Berezin–Toeplitz quantization; Balanced metrics; Fano manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if a Fano manifold has discrete automorphism group and admits a polarized Kähler–Einstein metric, then there exists a sequence of anticanonically balanced metrics converging smoothly to the Kähler–Einstein metric. Our proof is based on a simplification of Donaldson’s proof of the analogous result for balanced metrics, replacing a delicate geometric argument by the use of Berezin–Toeplitz quantization. We then apply this result to compute the asymptotics of the optimal rate of convergence to the fixed point of Donaldson’s iterations in the anticanonical setting.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 50 条
[21]   Balanced metrics on Hartogs domains [J].
Andrea Loi ;
Michela Zedda .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2011, 81 :69-77
[22]   Slope Stability for Lines on Products of Fano Manifolds [J].
T. Suzuki .
Mathematical Notes, 2018, 103 :968-976
[23]   The balanced metrics and cscK metrics on certain holomorphic ball bundles [J].
Feng, Zhiming ;
Tu, Zhenhan .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 174
[24]   Uniform families of minimal rational curves on Fano manifolds [J].
Gianluca Occhetta ;
Luis E. Solá Conde ;
Kiwamu Watanabe .
Revista Matemática Complutense, 2016, 29 :423-437
[25]   AN INVARIANT FOR EMBEDDED FANO MANIFOLDS COVERED BY LINEAR SPACES [J].
Suzuki, Taku .
KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (01) :223-230
[26]   A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds [J].
Marco Andreatta .
Milan Journal of Mathematics, 2009, 77 :361-383
[27]   Rational curves and bounds on the Picard number of Fano manifolds [J].
Novelli, Carla ;
Occhetta, Gianluca .
GEOMETRIAE DEDICATA, 2010, 147 (01) :207-217
[28]   Rational curves and bounds on the Picard number of Fano manifolds [J].
Carla Novelli ;
Gianluca Occhetta .
Geometriae Dedicata, 2010, 147 :207-217
[29]   Compactness of Kahler-Ricci solitons on Fano manifolds [J].
Guo, Bin ;
Phong, Duong H. ;
Song, Jian ;
Sturm, Jacob .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) :305-316
[30]   Uniform families of minimal rational curves on Fano manifolds [J].
Occhetta, Gianluca ;
Conde, Luis E. Sola ;
Watanabe, Kiwamu .
REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02) :423-437