Anticanonically balanced metrics on Fano manifolds

被引:0
作者
Louis IOOS
机构
[1] Max Planck Institute for Mathematics,
来源
Annals of Global Analysis and Geometry | 2022年 / 62卷
关键词
Berezin–Toeplitz quantization; Balanced metrics; Fano manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if a Fano manifold has discrete automorphism group and admits a polarized Kähler–Einstein metric, then there exists a sequence of anticanonically balanced metrics converging smoothly to the Kähler–Einstein metric. Our proof is based on a simplification of Donaldson’s proof of the analogous result for balanced metrics, replacing a delicate geometric argument by the use of Berezin–Toeplitz quantization. We then apply this result to compute the asymptotics of the optimal rate of convergence to the fixed point of Donaldson’s iterations in the anticanonical setting.
引用
收藏
页码:1 / 32
页数:31
相关论文
共 50 条
  • [21] Slope Stability for Lines on Products of Fano Manifolds
    Suzuki, T.
    MATHEMATICAL NOTES, 2018, 103 (5-6) : 968 - 976
  • [22] Slope Stability for Lines on Products of Fano Manifolds
    T. Suzuki
    Mathematical Notes, 2018, 103 : 968 - 976
  • [23] The balanced metrics and cscK metrics on certain holomorphic ball bundles
    Feng, Zhiming
    Tu, Zhenhan
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 174
  • [24] Uniform families of minimal rational curves on Fano manifolds
    Gianluca Occhetta
    Luis E. Solá Conde
    Kiwamu Watanabe
    Revista Matemática Complutense, 2016, 29 : 423 - 437
  • [25] AN INVARIANT FOR EMBEDDED FANO MANIFOLDS COVERED BY LINEAR SPACES
    Suzuki, Taku
    KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (01) : 223 - 230
  • [26] A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds
    Marco Andreatta
    Milan Journal of Mathematics, 2009, 77 : 361 - 383
  • [27] Rational curves and bounds on the Picard number of Fano manifolds
    Novelli, Carla
    Occhetta, Gianluca
    GEOMETRIAE DEDICATA, 2010, 147 (01) : 207 - 217
  • [28] Rational curves and bounds on the Picard number of Fano manifolds
    Carla Novelli
    Gianluca Occhetta
    Geometriae Dedicata, 2010, 147 : 207 - 217
  • [29] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [30] Uniform families of minimal rational curves on Fano manifolds
    Occhetta, Gianluca
    Conde, Luis E. Sola
    Watanabe, Kiwamu
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 423 - 437