The Neumann problem for the Laplace equation on general domains

被引:0
作者
Dagmar Medková
机构
[1] Institute of Mathematics of the Academy of Sciences of the Czech Republic,
来源
Czechoslovak Mathematical Journal | 2007年 / 57卷
关键词
Laplace equation; Neumann problem; potential; boundary; integral equation method;
D O I
暂无
中图分类号
学科分类号
摘要
The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set G in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on ∂G. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on G a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed.
引用
收藏
页码:1107 / 1139
页数:32
相关论文
共 12 条
[1]  
Deny J.(1950)Les potentiels d’énergie finie Acta Math. 82 107-183
[2]  
Jerison S.(1982)Boundary behavior of harmonic functions in non-tangentially accessible domains Adv. Math. 47 80-147
[3]  
Kenig C. E.(1981)Quasiconformal mappings and extendability of functions in Sobolev spaces Acta Math. 147 71-88
[4]  
Jones P. W.(1996)A generalized Drazin inverse Glasgow Math. J. 38 367-381
[5]  
Koliha J. J.(1998)Solution of the Robin problem for the Laplace equation Appl. Math. 43 133-155
[6]  
Medková D.(1998)Solution of the Neumann problem for the Laplace equation Czechoslovak Math. J. 48 768-784
[7]  
Medková D.(1971)Smooth surfaces with infinite cyclic variation Čas. Pěst. Mat. 96 86-101
[8]  
Netuka I.(1962)Hyponormal operators Pacific J. Math. 12 1453-1458
[9]  
Stampfli J.(2001)On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries J. Math. Anal. Appl. 262 733-748
[10]  
Steinbach O.(1984)Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains J. Funct. Anal. 59 572-611