Multi-Point Monin–Obukhov Similarity of Turbulence Cospectra in the Convective Atmospheric Boundary Layer

被引:0
|
作者
Mengjie Ding
Chenning Tong
机构
[1] Clemson University,Department of Mechanical Engineering
[2] Clemson,undefined
来源
Boundary-Layer Meteorology | 2021年 / 178卷
关键词
Atmospheric flows; Boundary-layer structure; Turbulence;
D O I
暂无
中图分类号
学科分类号
摘要
The shear-stress cospectrum and the horizontal and vertical temperature-flux cospectra in the convective boundary layer (CBL) are predicted using the multi-point Monin–Obukhov similarity (MMO theory). MMO theory was recently proposed and then derived from first principles by Tong and Nguyen (Journal of the Atmospheric Sciences, 2015, Vol. 72, 4337 – 4348) and Tong and Ding (Journal of Fluid Mechanics, 2019, Vol. 864, 640 – 669) to address the issue of the incomplete similarity in the Monin–Obukhov similarity theory. According to MMO theory, the CBL has a two-layer structure: the convective layer (z≫-L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \gg -L$$\end{document}) and the convective–dynamic layer (z≪-L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \ll -L$$\end{document}). The former consists of the convective range (k≪-1/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ll -1/L$$\end{document}) and the inertial range (k≫1/z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \gg 1/z$$\end{document}), while the latter consists of the convective range, the dynamic range (-1/L≪k≪1/z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/L \ll k\ll 1/z$$\end{document}), and the inertial range, where z, k, and L are the height from the ground, the horizontal wavenumber, and the Obukhov length, respectively. We use MMO theory to predict the cospectra for the convective range and the dynamic range. They have the same scaling in the convective range for both z≪-L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \ll -L$$\end{document} and z≫-L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z \gg -L$$\end{document}. The shear-stress cospectrum and the vertical temperature-flux cospectrum have k0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^0$$\end{document} scaling in both the convective and dynamic ranges. The horizontal temperature-flux cospectrum has k-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-1/3}$$\end{document} and k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{-1}$$\end{document} scaling in the convective and dynamic ranges respectively. The predicted scaling exponents are in general agreement with high-resolution large-eddy-simulation results. However, the horizontal temperature-flux cospectrum is found to change sign from the dynamic range (negative) to the convective range (positive), which is shown to be caused by the temperature–pressure-gradient interaction.
引用
收藏
页码:185 / 199
页数:14
相关论文
共 50 条
  • [1] Multi-Point Monin-Obukhov Similarity of Turbulence Cospectra in the Convective Atmospheric Boundary Layer
    Ding, Mengjie
    Tong, Chenning
    BOUNDARY-LAYER METEOROLOGY, 2021, 178 (02) : 185 - 199
  • [2] Multi-point Monin-Obukhov similarity in the convective atmospheric surface layer using matched asymptotic expansions
    Tong, Chenning
    Ding, Mengjie
    JOURNAL OF FLUID MECHANICS, 2019, 864 : 640 - 669
  • [3] On Monin–Obukhov Similarity In The Stable Atmospheric Boundary Layer
    Markus Pahlow
    Marc B. Parlange
    FERNANDO Porté-Agel
    Boundary-Layer Meteorology, 2001, 99 : 225 - 248
  • [4] On Monin-Obukhov similarity in the stable atmospheric boundary layer
    Pahlow, M
    Parlange, MB
    Porté-Agel, F
    BOUNDARY-LAYER METEOROLOGY, 2001, 99 (02) : 225 - 248
  • [5] Multipoint Monin-Obukhov Similarity and Its Application to Turbulence Spectra in the Convective Atmospheric Surface Layer
    Tong, Chenning
    Nguyen, Khuong X.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (11) : 4337 - 4348
  • [6] Nondimensionalization of the Atmospheric Boundary-Layer System: Obukhov Length and Monin–Obukhov Similarity Theory
    Jun–Ichi Yano
    Marta Wacławczyk
    Boundary-Layer Meteorology, 2022, 182 : 417 - 439
  • [7] Turbulence Scales of the Monin–Obukhov Similarity Theory in the Anisotropic Mountain Boundary Layer
    V. V. Nosov
    V. P. Lukin
    E. V. Nosov
    A. V. Torgaev
    Russian Physics Journal, 2020, 63 : 244 - 249
  • [8] Nondimensionalization of the Atmospheric Boundary-Layer System: Obukhov Length and Monin-Obukhov Similarity Theory
    Yano, Jun-Ichi
    Waclawczyk, Marta
    BOUNDARY-LAYER METEOROLOGY, 2022, 182 (03) : 417 - 439
  • [9] Turbulence Scales of the Monin-Obukhov Similarity Theory in the Anisotropic Mountain Boundary Layer
    Nosov, V. V.
    Lukin, V. P.
    Nosov, E. V.
    Torgaev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2020, 63 (02) : 244 - 249
  • [10] Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory
    Wu, Xiaoqing
    Zhu, Xingting
    Huang, Honghua
    Hu, Shunxing
    Guangxue Xuebao/Acta Optica Sinica, 2012, 32 (07):