Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction–Subdiffusion Equations

被引:0
作者
Jincheng Ren
Hong-lin Liao
Zhimin Zhang
机构
[1] Henan University of Economics and Law,College of Mathematics and Information Science
[2] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[3] Beijing Computational Science Research Center,Department of Mathematics
[4] Wayne State University,undefined
来源
Journal of Scientific Computing | 2020年 / 84卷
关键词
Fractional reaction–subdiffusion equations; Finite element method; Time-space error splitting argument; Sharp temporal ; -norm error estimate; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider superconvergence error estimates of finite element method approximation of Caputo’s time fractional reaction–subdiffusion equations under nonuniform time meshes. For the standard Galerkin method we see that the optimal order error estimate of temporal direction cannot be derived from the weak formulation of the problem. We establish a time-space error splitting argument, which are called the temporal error and the spatial error, respectively. The temporal error is proved skillfully based on an improved discrete Grönwall inequality. We obtain the sharp temporal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm error estimates with respect to the convergence order of the approximate solution and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm superclose results are given in details. Furthermore, by virtue of the interpolated postprocessing techniques, the global H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm superconvergence results are presented. Finally, we present some numerical results that give insight into the reliability of the theoretical analysis.
引用
收藏
相关论文
共 88 条
[1]  
Alikhanov AA(2015)A new difference scheme for the time fractional diffusion equation J. Comput. Phys. 280 424-438
[2]  
Chen H(2019)Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem J. Sci. Comput. 79 624-647
[3]  
Stynes M(2008)Finite element method for the space and time fractional Fokker–Planck equation SIAM J. Numer. Anal. 47 204-226
[4]  
Deng WH(2020)Simple maximum-principle preserving time-stepping methods for time-fractional Allen–Cahn equation Adv. Comput. Math. 235 3285-3290
[5]  
Ji BQ(2011)High-order finite element methods for time-fractional partial differential equations J. Comput. Appl. Math. 35 561-582
[6]  
Liao H-L(2015)Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion IMA J. Numer. Anal. 36 197-221
[7]  
Zhang LM(2016)An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data IMA J. Numer. Anal. 51 445-466
[8]  
Jiang Y(2013)Error estimates for a semidiscrete finite element method for fractional order parabolic equations SIAM J. Numer. Anal. 281 825-843
[9]  
Ma JT(2015)The Galerkin finite element method for a multi-term time-fractional diffusion equation J. Comput. Phys. 38 A146-A170
[10]  
Jin B(2016)Two fully discrete schemes for fractional diffusion and diffusion-wave equations SIAM J. Sci. Comput. 24 86-103