Single machine scheduling with deadlines and increasing rates of processing times

被引:0
作者
T.C.E. Cheng
Q. Ding
机构
[1] The Hong Kong Polytechnic University,
[2] Hung Hom,undefined
[3] Kowloon,undefined
[4] Hong Kong,undefined
[5] (e-mail: mscheng@polyu.edu.hk) ,undefined
来源
Acta Informatica | 2000年 / 36卷
关键词
Processing Time; Dynamic Programming; Flow Time; Single Machine; Programming Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The makespan, flow time and maximum lateness problems of scheduling a set of tasks with deadlines and increasing rates of processing times on a single machine are considered in this paper. We first show that, when the increasing rates of processing time are identical, the makespan problem is equivalent to the corresponding flow time problem. Both problems are solvable in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $O(n^5)$\end{document} time by a dynamic programming algorithm. As an application of the dynamic programming algorithm, we demonstrate that the corresponding maximum lateness problem can be solved in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $O(n^6\log n)$\end{document} time. We then show that the general makespan problem is strongly NP-complete. Thus, both the corresponding flow time problem and maximum lateness problem are also strongly NP-complete.
引用
收藏
页码:673 / 692
页数:19
相关论文
empty
未找到相关数据