Mersenne numbers which are products of two Pell numbers

被引:0
作者
Murat Alan
Kadriye Simsek Alan
机构
[1] Yildiz Technical University Mathematics Department,
[2] Davutpasa Campus,undefined
[3] Yildiz Technical University Department of Mathematical Engineering,undefined
[4] Davutpasa Campus,undefined
来源
Boletín de la Sociedad Matemática Mexicana | 2022年 / 28卷
关键词
Pell numbers; Mersenne numbers; Diophantine equations; Linear forms in logarithms; 11B39; 11J86; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Pn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_n)_{n\ge 0}$$\end{document} be the Pell sequence defined by P0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_0=0 $$\end{document}, P1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_1=1 $$\end{document} and Pn+2=2Pn+1+Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{n+2}=2P_{n+1}+P_{n} $$\end{document} for n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \ge 0 $$\end{document} and Mk=2k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_k=2^k-1 $$\end{document} be the k-th Mersenne number for k≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k\ge 1. $$\end{document} We show that the Diophantine equation PnPm=Mk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_nP_m=M_k$$\end{document} with m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m\le n $$\end{document} has only the unique positive integer solution (n,m,k)=(1,1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,m,k)=(1,1,1)$$\end{document}.
引用
收藏
相关论文
共 62 条
[1]  
Aboudja H(2021)On perfect powers that are sums of two Pell numbers Period Math. Hung. 82 11-15
[2]  
Hernane M(1969)The equations Quart. J. Math. Oxford Ser. 20 129-137
[3]  
Rihane SE(2013) and Publ. Math. Debrecen 82 623-639
[4]  
Togbé A(2016)On a conjecture about repdigits in k-generalized Fibonacci sequences Glasnik Matematički 17 307-319
[5]  
Baker A(2017)Mersenne k-Fibonacci numbers Taiwan. J. Math. 21 739-751
[6]  
Davenport H(2014)Powers of two as sums of three Pell numbers J. Integer Seq. 17 14-8
[7]  
Bravo JJ(2016)Powers of two as sums of two Lucas numbers Quaest. Math. 39 391-400
[8]  
Luca F(2020)On the Diophantine equation Math. Commun. 25 185-199
[9]  
Bravo JJ(2018)Ratios of sums of two Fibonacci numbers equal to powers of 2 Periodica Math. Hung. 77 175-190
[10]  
Gómez CA(2006)X-coordinates of Pell equations as sums of two tribonacci numbers Ann. Math. 163 969-1018