Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions

被引:0
|
作者
Ferdag Kahraman Aksoyak
Yusuf Yayli
机构
[1] Ahi Evran University,Division of Elementary Mathematics Education
[2] Ankara University,Department of Mathematics
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2020年 / 90卷
关键词
Quaternions; Gauss map; Pointwise 1-type Gauss map; Rotational surface; 53B25; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we determine a rotational surface by means of generalized quaternions and study this flat rotational surface with pointwise 1-type Gauss map in four-dimensional generalized space Eαβ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{\alpha \beta }^{4}$$\end{document}. Also, for some special cases of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, we obtain the characterizations of flat rotational surfaces with pointwise 1-type Gauss map in four-dimensional Euclidean space E4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}^{4}$$\end{document} and four-dimensional pseudo-Euclidean space E24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{2}^{4}$$\end{document}.
引用
收藏
页码:251 / 257
页数:6
相关论文
共 50 条
  • [1] Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions
    Aksoyak, Ferdag Kahraman
    Yayli, Yusuf
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (02) : 251 - 257
  • [2] FLAT ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN E-4
    Aksoyak, Ferdag Kahraman
    Yayli, Yusuf
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 305 - 316
  • [3] ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Dursun, Ugur
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 301 - 312
  • [4] SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Kim, Dong-Soo
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2011, 18 (04): : 369 - 377
  • [5] HELICOIDAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Choi, Miekyung
    Kim, Dong-Soo
    Kim, Young Ho
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 215 - 223
  • [6] Ruled surfaces with pointwise 1-type Gauss map
    Kim, YH
    Yoon, DW
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 34 (3-4) : 191 - 205
  • [7] Surfaces of revolution with pointwise 1-type Gauss map
    Chen, BY
    Choi, M
    Kim, YH
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 447 - 455
  • [8] HASIMOTO SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Eren, Kemal
    Ersoy, Soley
    JOURNAL OF SCIENCE AND ARTS, 2024, (03): : 545 - 550
  • [9] TENSOR PRODUCT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Arslan, Kadri
    Bulca, Betul
    Kilic, Bengu
    Kim, Young Ho
    Murathan, Cengizhan
    Ozturk, Gunay
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 601 - 609
  • [10] CLASSIFICATION OF RULED SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
    Choi, Miekyung
    Kim, Young Ho
    Yoon, Dae Won
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1297 - 1308