Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation

被引:0
|
作者
SK Safdar Hossain
机构
[1] King Faisal University,Department of Chemical Engineering, College of Engineering
关键词
Electrooxidation; Formic acid; Bimetallic Pd-Fe; N-doped reduced graphene oxide; Catalytic activity;
D O I
暂无
中图分类号
学科分类号
摘要
This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source. Palladium and iron with controllable atomic ratio were used as the active metals. Graphene oxide and carbon nanotube-supported PdFe nanoparticles were synthesized for comparison. The structure, morphology, and chemical composition of the synthesized catalysts were ascertained by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The average particle sizes for Pd3Fe/N-rGO and Pd/N-rGO were 4.65 and 3.95 nm, respectively. The electrochemical characterizations (CO stripping, cyclic voltammetry, and chronoamperometry) showed that the Pd3Fe/N-rGO electrocatalyst had higher electrocatalytic activity and stability compared with that of Pd3Fe/rGO and Pd3Fe/CNT. The mass activity of Pd3Fe/N-rGO in 0.5 M of HCOOH and 0.5 M of H2SO4 solutions was 1463.9 mAmg−1 Pd, which was 3.3 and 1.35 times that of the activity obtained with graphene oxide and carbon nanotubes with the same composition, respectively. The superior performance of the Pd3Fe/N-rGO catalyst was ascribed to the presence of nitrogen functionalities in the nitrogen-doped reduced GO and the synergistic interaction between Pd and Fe nanoparticles. Nitrogen-doped reduced GO promoted the formation of smaller and narrowly distributed nanoparticles and exerted favorable electronic effects because of electron transfer from N to Pd. Therefore, Pd3Fe/N-rGO can serve as a potential electrocatalyst for the oxidation of formic acid.
引用
收藏
页码:6543 / 6556
页数:13
相关论文
共 50 条
  • [1] Bimetallic Pd-Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation
    Hossain, S. K. Safdar
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (07) : 6543 - 6556
  • [2] Bimetallic Pd-Co Nanoparticles Supported on Nitrogen-Doped Reduced Graphene Oxide as Efficient Electrocatalysts for Formic Acid Electrooxidation
    Hossain, S. K. Safdar
    Alwi, Mohammad Mudassir
    Saleem, Junaid
    Al-Hashem, Hussain Taj
    McKay, Gordon
    Mansour, Said
    Ali, Syed Sadiq
    CATALYSTS, 2021, 11 (08)
  • [3] Nitrogen-Doped Reduced Graphene Oxide Supported Pd4.7Ru Nanoparticles Electrocatalyst for Oxygen Reduction Reaction
    Park, Gil-Ryeong
    Jo, Seung Geun
    Varyambath, Anuraj
    Kim, Jeonghyun
    Lee, Jung Woo
    NANOMATERIALS, 2021, 11 (10)
  • [4] Nitrogen-doped carbon-TiO2 composite as support of Pd electrocatalyst for formic acid oxidation
    Qin, Yuan-Hang
    Li, Yunfeng
    Lam, Thomas
    Xing, Yangchuan
    JOURNAL OF POWER SOURCES, 2015, 284 : 186 - 193
  • [5] Enhanced Electro-catalytic Activity of Nitrogen-doped Reduced Graphene Oxide Supported PdCu Nanoparticles for Formic Acid Electro-oxidation
    Chowdhury, Sreya Roy
    Maiyalagan, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) : 14808 - 14819
  • [6] Surfactant-free Pd-Fe nanoparticles supported on reduced graphene oxide as nanocatalyst for formic acid oxidation
    Feng, Anni
    Bai, Jie
    Shao, Wenyao
    Hong, Wenjing
    Tian, Zhong-qun
    Xiao, Zongyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (22) : 15196 - 15202
  • [7] Reduced graphene oxide (RGO)-supported AuCore-PdShell nanocomposite electrocatalyst for facile formic acid oxidation
    Raghavendra, P.
    Sekhar, Y. Chandra
    Chandana, P. Sri
    Sarma, L. Subramanyam
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 144
  • [8] Palladium–Cobalt Bimetallic Nanoparticles Supported on Nitrogen-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction
    Cai Zhang
    Qiang Zhang
    Tao Liu
    Shengyang Wang
    Ming Song
    Journal of Electronic Materials, 2022, 51 : 4580 - 4588
  • [9] Formic acid dehydrogenation over Pd single atom or cluster supported on nitrogen-doped graphene: A DFT study
    Liu, Cheng
    Bing, Qiming
    Liu, Jing-yao
    APPLIED SURFACE SCIENCE, 2022, 604
  • [10] Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation
    Jin, Yanxian
    Zhao, Jie
    Li, Fang
    Jia, Wenping
    Liang, Danxia
    Chen, Hao
    Li, Rongrong
    Hu, Jiajie
    Ni, Jiamin
    Wu, Tingqian
    Zhong, Danping
    ELECTROCHIMICA ACTA, 2016, 220 : 83 - 90