Feynman diagrams versus Fermi-gas Feynman emulator

被引:0
作者
K. Van Houcke
F. Werner
E. Kozik
N. Prokof’ev
B. Svistunov
M. J. H. Ku
A. T. Sommer
L. W. Cheuk
A. Schirotzek
M. W. Zwierlein
机构
[1] Department of Physics, University of Massachusetts, Amherst
[2] Department of Physics and Astronomy, Ghent University, B-9000 Ghent
[3] Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, 75005 Paris
[4] Theoretische Physik, ETH Zürich, CH-8093, Zürich
[5] Centre de Physique Théorique, Ecole Polytechnique
[6] Russian Research Center, Kurchatov Institute
[7] Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Cambridge
[8] Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys2273
中图分类号
学科分类号
摘要
Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, bold diagrammatic Monte Carlo 1-3, and precision experiments on ultracold atoms. Specifically, we compute and measure, with unprecedented precision, the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system 4-6. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using bold diagrammatic Monte Carlo. © 2012 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:366 / 370
页数:4
相关论文
共 31 条
[1]  
Van Houcke K., Kozik E., Prokof'ev N., Svistunov B., Computer Simulation Studies in Condensed Matter Physics XXI, (2008)
[2]  
Prokof'ev N., Svistunov B., Bold diagrammatic Monte Carlo technique: When the sign problem is welcome, Phys. Rev. Lett., 99, (2007)
[3]  
Prokof'ev N.V., Svistunov B.V., Bold diagrammatic Monte Carlo: A generic sign-problem tolerant technique for polaron models and possibly interacting many-body problems, Phys. Rev. B, 77, (2008)
[4]  
Inguscio M., Ketterle W., Salomon C., Proc. Int. School of Physics Enrico Fermi, (2008)
[5]  
Giorgini S., Pitaevskii L.P., Stringari S., Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., 80, pp. 1215-1274, (2008)
[6]  
Zwerger W., BCS-BEC Crossover and the Unitary Fermi Gas, (2012)
[7]  
Feynman R., Simulating physics with computers, Int. J. Theoret. Phys., 21, pp. 467-488, (1982)
[8]  
Bloch I., Dalibard J., Zwerger W., Many-body physics with ultracold gases, Rev. Mod. Phys., 80, pp. 885-964, (2008)
[9]  
Fetter A., Walecka J., Quantum Theory of Many-Particle Systems, (1971)
[10]  
Kozik E., Et al., Diagrammatic Monte Carlo for correlated fermions, Europhys. Lett., 90, (2010)