Bounding λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document} for Kähler–Einstein metrics with large symmetry groups

被引:0
作者
Stuart J. Hall
Thomas Murphy
机构
[1] University of Buckingham,Department of Applied Computing
[2] Universitè Libre de Bruxelles,Dèpartment de Mathèmatique
[3] McMaster University,Department of Mathematics
关键词
Linear Inequality; Einstein Metrics; Einstein Manifold; Ricci Soliton; Ritz Method;
D O I
10.1007/s10455-014-9416-2
中图分类号
学科分类号
摘要
We calculate an upper bound for the second non-zero eigenvalue of the scalar Laplacian, λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{2}$$\end{document}, for toric-Kähler–Einstein metrics in terms of the polytope data. We also give a similar upper bound for Koiso–Sakane type Kähler–Einstein metrics. We provide some detailed examples in complex dimensions 1, 2 and 3.
引用
收藏
页码:145 / 158
页数:13
相关论文
共 25 条
[1]  
Abreu M(1998)Kähler geometry of toric varieties and extremal metrics Internat. J. Math. 9 641-651
[2]  
Abreu M(2002)On the invariant spectrum of Proc. London Math. Soc. 84 213-230
[3]  
Freitas P(2011)-invariant metrics on Ann. Global Anal. Geom. 39 259-292
[4]  
Dancer A(2009)On Ricci solitons of Cohomogeneity one Pure Appl. Math. Q. 5 571-618
[5]  
Wang M(2008)Some numerical results in complex differential geometry Comm. Math. Phys. 282 357-393
[6]  
Donaldson SK(2012)Numerical Kähler–Einstein metric on the third del Pezzo Trans. Amer. Math. Soc. 364 887-910
[7]  
Doran C(1994)Hearing Delzant polytopes from the equivalent spectrum J. Differ. Geom. 40 285-309
[8]  
Headrick M(2005)Kaehler structures on toric varieties Class. Quantum Gravity 22 4931-4960
[9]  
Herzog C(2009)Numerical Ricci-flat metrics on J. Inst. Math. Jussieu 8 743-768
[10]  
Kantor J(1988)Ricci iterations on Kähler classes Osaka J. Math. 25 933-959