Arithmetic of the 7-regular bipartition function modulo 3

被引:0
作者
Bernard L. S. Lin
机构
[1] Jimei University,School of Sciences
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Regular bipartition; Regular partition; Congruence; Modular equation; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the function Bℓ(n) which counts the number of ℓ-regular bipartitions of n. Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). In particular, using Ramanujan’s two modular equations of degree 7, we prove an infinite family of congruences: for α≥2 and n≥0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_7 \biggl(3^{\alpha}n+\frac{5\cdot 3^{\alpha-1}-1}{2} \biggr)\equiv 0\ ({ \rm mod\ }3). $$\end{document} In addition, we give an elementary proof of two infinite families of congruences modulo 3 satisfied by the 7-regular partition function due to Furcy and Penniston (Ramanujan J. 27:101–108, 2012). We also present two conjectures for B13(n) modulo 3.
引用
收藏
页码:469 / 478
页数:9
相关论文
共 36 条
[1]  
Ahlgren S.(2001)The arithmetic of partitions into distinct parts Mathematika 48 203-211
[2]  
Lovejoy J.(2010)Arithmetic properties of partitions with even parts distinct Ramanujan J. 23 169-181
[3]  
Andrews G.E.(2008)Divisibility properties of the 5-regular and 13-regular partition functions Integers 8 940-943
[4]  
Hirschhorn M.D.(2011)On the number of partitions with distinct even parts Discrete Math. 311 1565-1568
[5]  
Sellers J.A.(2013)Congruences for the number of Discrete Math. 313 507-523
[6]  
Calkin N.(2013)-tuple partitions with distinct even parts Adv. Appl. Math. 51 63-70
[7]  
Drake N.(2009)Arithmetic properties of the Ramanujan J. 19 101-108
[8]  
James K.(2012)-regular partitions Ramanujan J. 27 25-34
[9]  
Law S.(1997)-divisibility of Ramanujan J. 1 58-63
[10]  
Lee P.(2010)-regular partition functions Bull. Aust. Math. Soc. 81 253-263