A year-round satellite sea-ice thickness record from CryoSat-2

被引:0
作者
Jack C. Landy
Geoffrey J. Dawson
Michel Tsamados
Mitchell Bushuk
Julienne C. Stroeve
Stephen E. L. Howell
Thomas Krumpen
David G. Babb
Alexander S. Komarov
Harry D. B. S. Heorton
H. Jakob Belter
Yevgeny Aksenov
机构
[1] University of Tromsø The Arctic University of Norway,Centre for Integrated Remote Sensing and Forecasting for Arctic Operations, Department of Physics and Technology
[2] University of Bristol,Bristol Glaciology Centre, School of Geographical Sciences
[3] University College London,Centre for Polar Observation and Modelling, Department of Earth Sciences
[4] National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory,Centre for Earth Observation Science
[5] University of Manitoba,Environment and Climate Change Canada
[6] Climate Research Division,Alfred Wegener Institute
[7] Helmholtz Centre for Polar and Marine Research,Environment and Climate Change Canada
[8] Meteorological Research Division,Marine Systems Modelling Group
[9] National Oceanography Centre,undefined
来源
Nature | 2022年 / 609卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Arctic sea ice is diminishing with climate warming1 at a rate unmatched for at least 1,000 years2. As the receding ice pack raises commercial interest in the Arctic3, it has become more variable and mobile4, which increases safety risks to maritime users5. Satellite observations of sea-ice thickness are currently unavailable during the crucial melt period from May to September, when they would be most valuable for applications such as seasonal forecasting6, owing to major challenges in the processing of altimetry data7. Here we use deep learning and numerical simulations of the CryoSat-2 radar altimeter response to overcome these challenges and generate a pan-Arctic sea-ice thickness dataset for the Arctic melt period. CryoSat-2 observations capture the spatial and the temporal patterns of ice melting rates recorded by independent sensors and match the time series of sea-ice volume modelled by the Pan-Arctic Ice Ocean Modelling and Assimilation System reanalysis8. Between 2011 and 2020, Arctic sea-ice thickness was 1.87 ± 0.10 m at the start of the melting season in May and 0.82 ± 0.11 m by the end of the melting season in August. Our year-round sea-ice thickness record unlocks opportunities for understanding Arctic climate feedbacks on different timescales. For instance, sea-ice volume observations from the early summer may extend the lead time of skilful August–October sea-ice forecasts by several months, at the peak of the Arctic shipping season.
引用
收藏
页码:517 / 522
页数:5
相关论文
共 50 条
[41]   Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness [J].
Blockley, Edward W. ;
Peterson, K. Andrew .
CRYOSPHERE, 2018, 12 (11) :3419-3438
[42]   Preliminary results of sea ice freeboard measurements of beaufort sea from cryosat-2 altimetry [J].
Zhang, S. ;
Zuo, Y. ;
Xiao, F. ;
Yuan, L. ;
Geng, T. ;
Xuan, Y. .
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2019, 42 (2/W13) :1811-1815
[43]   Uncertainty reduction of Arctic sea ice freeboard from CryoSat-2 interferometric mode [J].
Di Bella, A. ;
Skourup, H. ;
Bouffard, J. ;
Parrinello, T. .
ADVANCES IN SPACE RESEARCH, 2018, 62 (06) :1251-1264
[44]   Combined analysis of Cryosat-2/SMOS sea ice thickness data with model reanalysis fields over the Baltic Sea [J].
Raudsepp, Urmas ;
Uiboupin, Rivo ;
Maljutenko, Ilja ;
Hendricks, Stefan ;
Ricker, Robert ;
Liu, Ye ;
Iovino, Doroteaciro ;
Peterson, K. Andrew ;
Zuo, Hao ;
Lavergne, Thomas ;
Aaboe, Signe ;
Raj, Roshin P. .
JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2019, 12 :S73-+
[45]   Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge [J].
Armitage, Thomas W. K. ;
Ridout, Andy L. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (16) :6724-6731
[46]   Effect of Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements [J].
Nandan, Vishnu ;
Geldsetzer, Torsten ;
Yackel, John ;
Mahmud, Mallik ;
Scharien, Randall ;
Howell, Stephen ;
King, Joshua ;
Ricker, Robert ;
Else, Brent .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (20) :10419-10426
[47]   Temporal Variations in Ice Thickness of the Shirase Glacier Derived from Cryosat-2/SIRAL Data [J].
Satake, Yurina ;
Nakamura, Kazuki .
REMOTE SENSING, 2023, 15 (05)
[48]   Estimating Arctic Sea Ice Thickness with CryoSat-2 Altimetry Data Using the Least Squares Adjustment Method [J].
Xiao, Feng ;
Li, Fei ;
Zhang, Shengkai ;
Li, Jiaxing ;
Geng, Tong ;
Xuan, Yue .
SENSORS, 2020, 20 (24) :1-18
[49]   Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard [J].
Kwok, R. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (14) :5014-5020
[50]   Increased ice losses from Antarctica detected by CryoSat-2 [J].
McMillan, Malcolm ;
Shepherd, Andrew ;
Sundal, Aud ;
Briggs, Kate ;
Muir, Alan ;
Ridout, Andrew ;
Hogg, Anna ;
Wingham, Duncan .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (11) :3899-3905