On the probability of having rational \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-isogenies

被引:0
作者
Jeffrey D. Achter
Daniel Sadornil
机构
[1] Colorado State University,Department of Mathematics
[2] Dpto. Matemáticas,undefined
关键词
11G20; 14K02; Elliptic curve; isogeny; abelian variety; finite field;
D O I
10.1007/s00013-008-2598-8
中图分类号
学科分类号
摘要
We calculate the chance that an elliptic curve over a finite field has a specified number of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}-isogenies which emanate from it. We give a partial answer for abelian varieties of arbitrary dimension.
引用
收藏
页码:511 / 519
页数:8
相关论文
empty
未找到相关数据