Van der Waals contact between 2D magnetic VSe2 and transition metals and demonstration of high-performance spin-field-effect transistors二维磁性VSe2与过渡金属的范德华接触及其高性能自旋场效应晶体管研究

被引:0
作者
Jiaduo Zhu
Xing Chen
Wei Shang
Jing Ning
Dong Wang
Jincheng Zhang
Yue Hao
机构
[1] Xidian University,Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics
[2] Xidian-Wuhu Research Institute,Shaanxi Joint Laboratory of Graphene
[3] Xidian University,undefined
来源
Science China Materials | 2021年 / 64卷
关键词
VSe; contact; DFT; spin-FET;
D O I
暂无
中图分类号
学科分类号
摘要
This study used density functional theory and the quantum transport method to investigate the interfacial coupling and spin transport of transition metals (TMs) with a Fe, Co, and Ni/2H-VSe2 hybrid nanostructure. Because the indirect coupling of TM-Se-V led to an obvious reduction of the magnetic moment and the disappearance of the half-metal characteristics of 2H-VSe2, the expected spin-filtering effect of individual TMs and 2H-VSe2 deteriorated at the contact region. Nevertheless, all the TM/2H-VSe2-based dual-probe devices exhibited an interesting bias-dependent spin-injection efficiency with a maximum output spin-polarized current of 666 mA mm−1 in Co/2H-VSe2. The proposed TM/2H-VSe2-based spin-field-effect transistor demonstrated outstanding performance. The Ni/2H-VSe2-based transistor achieved a maximum output spin-polarized current of 3117 mA mm−1 and demonstrated a good switching characteristic of 106 mV dec−1. Importantly, all transistors achieved a widely tunable scale of spin extraction efficiency ranging consistently between 96% and −92% with gate bias. These results indicate a promising candidate for use in high-performance spintronic devices.
引用
收藏
页码:2786 / 2794
页数:8
相关论文
共 93 条
[1]  
Chang L(2010)Practical strategies for power-efficient computing technologies Proc IEEE 98 215-236
[2]  
Frank DJ(2020)Two-dimensional van der Waals spinterfaces and magnetic-interfaces Appl Phys Rev 7 011303-2475
[3]  
Montoye RK(2020)Spintronic devices for energy-efficient data storage and energy harvesting Commun Mater 1 24-4830
[4]  
Dayen JF(1988)Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices Phys Rev Lett 61 2472-3276
[5]  
Ray SJ(1989)Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange Phys Rev B 39 4828-2295
[6]  
Karis O(1995)Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions Phys Rev Lett 74 3273-9363
[7]  
Puebla J(2020)Proximity spin-orbit torque on a two-dimensional magnet within van der Waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI Nano Lett 20 2288-43926
[8]  
Kim J(2020)Spin-dependent tunneling barriers in CoPc/VSe J Phys Chem Lett 11 9358-868
[9]  
Kondou K(2020) from many-body interactions ACS Appl Mater Interfaces 12 43921-5685
[10]  
Baibich MN(2021)Spin-valve effect in Fe Nanoscale 13 862-293