Nontrivial Solutions for a (p, q)-Type Critical Choquard Equation on the Heisenberg Group

被引:0
作者
Baoling Yang
Deli Zhang
Sihua Liang
机构
[1] Changchun Normal University,College of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
(; , ; )-Laplacian problem; Heisenberg group; Critical exponents; Nonlinearity; Variation methods; 35J20; 35R03; 35J60; 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a critical (p, q) equation on the Heisenberg group of the following form: -ΔH,pu-ΔH,qu+V(ξ)(|u|p-2u+|u|q-2u)=μ∫HnF(ξ,u)|η-1ξ|λdξf(η,u)+|u|q∗-2u,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _{H,p}u-\Delta _{H,q}u+V(\xi )(|u|^{p-2}u+|u|^{q-2}u)=\mu \int \limits _{{\mathbb {H}}^{n}} \frac{F(\xi ,u)}{|\eta ^{-1}\xi |^{\lambda }}{\text {d}}\xi f(\eta ,u)+|u|^{q^{*}-2}u, \end{aligned}$$\end{document}where the operator -ΔH,℘φ=divH(|DHφ|H℘-2DHφ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _{H,\varvec{\wp }}\varphi ={\text {div}}_H(|D_H\varphi |_H^{\varvec{\wp }-2}D_H\varphi )$$\end{document}, with ℘∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\wp }\in \{p,q\}$$\end{document}, is the proverbial horizontal ℘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\wp }$$\end{document}-Laplacian on the Heisenberg group, 1<p<(2Q-λ)2Qq<q<Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p<\frac{(2Q-\lambda )}{2Q}q< q < Q $$\end{document}, q∗=qQ/(Q-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{*} = qQ/(Q-q)$$\end{document} is the critical exponent, and Q=2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q = 2n + 2 $$\end{document} is the homogeneous dimension of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{n}$$\end{document}, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are some real parameters. Under the appropriate assumptions of potential functions V and f, the existence of entire solutions to the above equation on the Heisenberg group is obtained by using the mountain pass theorem and the concentration compactness principle. The results presented here extend or complete recent papers and are new to critical equations involving (p, q)-Laplacian operators and convolution terms on Heisenberg group.
引用
收藏
相关论文
共 50 条
[21]   Ground state solutions of Nehari-Pankov type for a indefinite Choquard equation with the Hardy potential and critical nonlinearity [J].
Guo, Ting ;
Tang, Xianhua ;
Gui, Shuting .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
[22]   On Nonuniformly Subelliptic Equations of Q-sub-Laplacian Type with Critical Growth in the Heisenberg Group [J].
Nguyen Lam ;
Lu, Guozhen ;
Tang, Hanli .
ADVANCED NONLINEAR STUDIES, 2012, 12 (03) :659-681
[23]   Existence of nontrivial solution for a quasilinear elliptic equation with (p, q)-Laplacian in RN involving critical Sobolev exponents [J].
Latifi, M. ;
Bayat, R. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) :733-749
[24]   Existence of solutions for Kirchhoff type systems involving Q-Laplacian operator in Heisenberg group [J].
Deng, Shengbing ;
Tian, Xingliang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
[25]   Horizontal p-Kirchhoff equation on the Heisenberg group [J].
Razani, Abdolrahman .
BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
[26]   Regularity of solutions for the non-degenerate p-Laplacian equation on the Heisenberg group for p &lt; 2 [J].
Tran, Khang D. .
ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (02) :115-148
[27]   On singular solutions of Lane-Emden equation on the Heisenberg group [J].
Wei, Juncheng ;
Wu, Ke .
ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
[28]   MULTIPLE SOLUTIONS FOR A SINGULAR NONHOMOGENOUS BIHARMONIC EQUATION IN HEISENBERG GROUP [J].
Deng, Shengbing ;
Yu, Fang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, :488-507
[29]   On a critical Choquard-Kirchhoff p-sub-Laplacian equation in Hn [J].
Liang, Sihua ;
Pucci, Patrizia ;
Song, Yueqiang ;
Sun, Xueqi .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01)
[30]   Infinitely many sign-changing solutions for Choquard equation with doubly critical exponents [J].
Liu, Senli ;
Yang, Jie ;
Chen, Haibo .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (02) :315-337