On π-S-permutable subgroups of finite groups

被引:0
作者
A. Ballester-Bolinches
Yangming Li
Ning Su
Zhuoqing Xie
机构
[1] Guangdong University of Education,Department of Mathematics
[2] Universitat de València,Departament d’Àlgebra
[3] Sun Yat-sen University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Primary 20D10; Secondary 20D15; 20D20; 20D40; Finite group; permutability; S-permutability; S-semipermutability; normal closure;
D O I
暂无
中图分类号
学科分类号
摘要
Let π be a set of primes. A subgroup H of a finite group G is said to be π-S-permutable in G if H permutes with every Sylow q-subgroup of G for all primes q ∈ π. The main aim of this paper is to establish structural results about the normal closure of π-S-permutable subgroups and p-subgroups permuting with all p′-subgroups for a single prime p. Our results stem from a recent article by Isaacs [5] and subsequent discussions with the authors about it.
引用
收藏
页码:93 / 99
页数:6
相关论文
共 4 条
[1]  
Guralnick R.M.(1983)Subgroups of prime power index in a simple group J. Algebra 81 304-311
[2]  
Isaacs I.M.(2014)Semipermutable Arch. Math. (Basel) 102 1-6
[3]  
Kegel O.H.(1962)-subgroups Math. Z. 78 205-221
[4]  
Moretó A.(2013)Sylow-Gruppen und Subnormalteiler endlicher Gruppen J. Algebra 379 80-84