Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode

被引:0
|
作者
Rui Miao
Bairui Tao
Fengjuan Miao
Yu Zang
Cuiping Shi
Lei Zhu
Paul K. Chu
机构
[1] Qiqihar University,College of Communications and Electronics Engineering
[2] Qiqihar University,College of Materials Science and Engineering
[3] City University of Hong Kong,Department of Physics and Department of Materials Science and Engineering
来源
Ionics | 2019年 / 25卷
关键词
Electrochemical supercapacitor; Nickel hydroxide; Co; O; Co(OH); Graphene;
D O I
暂无
中图分类号
学科分类号
摘要
Electrode materials with high conductivity and excellent redox characteristics are vital to supercapacitors in electrochemical energy storage. Herein, a graphene/Co3O4/Co(OH)2/Ni electrode synthesized hydrothermally has high specific capacitance and the morphology and structure of the graphene/Co3O4/Co(OH)2/Ni electrodes are characterized systematically. The three electrode charge–discharge test exhibits an excellent specific capacitance of 3216 F g−1 at 5 A g−1. The two electrode charge–discharge capacitance decreases from an initial value of 195 to 140 F g−1 after 5000 cycles showing capacitance retention of 71.1%. A test device is fabricated with (OH)2/Co3O4/graphene/Ni as the positive electrode and carbon/nickel foam as the negative electrode. After charging for 15 s, two such devices in series can efficiently power five 5-mm-diameter light-emitting diodes (LEDs) and the excellent electrochemical performance reveals large potential in next-generation high-performance supercapacitors.
引用
收藏
页码:1783 / 1792
页数:9
相关论文
共 50 条
  • [1] Co3O4 and Co(OH)2 loaded graphene on Ni foam for high-performance supercapacitor electrode
    Miao, Rui
    Tao, Bairui
    Miao, Fengjuan
    Zang, Yu
    Shi, Cuiping
    Zhu, Lei
    Chu, Paul K.
    IONICS, 2019, 25 (04) : 1783 - 1792
  • [2] Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes
    Zhang Cheng
    Deng Ming-Sen
    Cai Shao-Hong
    ACTA PHYSICA SINICA, 2017, 66 (12)
  • [3] Preparation and Application of Co3O4/Reduced Graphene Oxide/Ni Foam as High-Performance Asymmetric Supercapacitor Electrodes
    Azizi, Sadegh
    Seifi, Majid
    Askari, Mohammad Bagher
    BRAZILIAN JOURNAL OF PHYSICS, 2022, 52 (05)
  • [4] Preparation and Application of Co3O4/Reduced Graphene Oxide/Ni Foam as High-Performance Asymmetric Supercapacitor Electrodes
    Sadegh Azizi
    Majid Seifi
    Mohammad Bagher Askari
    Brazilian Journal of Physics, 2022, 52
  • [5] CuO/Co3O4 materials grown directly on nickel foam for high-performance supercapacitor electrode
    Xue, Ke
    Tian, Lecheng
    Zheng, Xiaoyan
    Ding, Juan
    Ali, Maryum
    Xiao, Siyi
    Song, Mengxia
    Kumar, S.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 313
  • [6] Co3O4 nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
    Yang, Jinlin
    Wei, Fuxiang
    Sui, Yanwei
    Qi, Jiqiu
    He, Yezeng
    Meng, Qingkun
    Zhang, Shuai
    RSC ADVANCES, 2016, 6 (66): : 61803 - 61808
  • [7] Co3O4/MnO2/Co(OH)2 on nickel foam composites electrode with excellent electrochemical performance for supercapacitor
    Li, Xue
    Miao, Rui
    Tao, Bairui
    Miao, Fengjuan
    Zang, Yu
    Chu, Paul K.
    SOLID STATE SCIENCES, 2019, 95
  • [8] Facile construction of hexagonal Co3O4 as the electrode for high-performance supercapacitor
    Wu, Fangze
    Cui, Fang
    Ma, Qinghai
    Zhang, Jiajia
    Qi, Xin
    Cui, Tieyu
    MATERIALS LETTERS, 2022, 324
  • [9] Nanostructured Co3O4 for achieving high-performance supercapacitor
    Lu, Yuan
    Deng, Binglu
    Liu, Yangbiao
    Wang, Jixi
    Tu, Zekun
    Lu, Junming
    Xiao, Xiudi
    Xu, Gang
    MATERIALS LETTERS, 2021, 285
  • [10] Ultralayered Co3O4 for High-Performance Supercapacitor Applications
    Meher, Sumanta Kumar
    Rao, G. Ranga
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31): : 15646 - 15654