On the sign changes and non-vanishing of Hecke eigenvalues associated to symmetric power L-Functions

被引:0
作者
Guodong Hua
机构
[1] Weinan Normal University,School of Mathematics and Statistics
[2] Shandong University,School of Mathematics
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Cusp forms; Fourier coefficients; Symmetric power ; -function; Sign changes; 11F11; 11F30; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a Hecke cusp form of even integral weight k for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,{\mathbb {Z}})$$\end{document}. Denote by λsymjf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\text {sym}^{j}f}(n)$$\end{document} the nth normalized coefficient of the Dirichlet expansion of the jth symmetric power L-function associated with f. In this paper, we derive a upper bound for the first negative coefficient for sequence {λsymjf(n)}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _{\text {sym}^{j}f}(n)\}_{n\ge 1}$$\end{document} in terms of the weight of f. Furthermore, we also investigate the length of the maximal string of terms with the same sign in an interval [1, x].
引用
收藏
页码:775 / 789
页数:14
相关论文
共 65 条
[1]  
Banks WD(1997)Twisted symmetric-square Duke Math. J. 87 345-354
[2]  
Cogdell J(2004)-functions and the nonexistence of Siegel zeros on Int. Math. Res. Not. 31 1562-1618
[3]  
Michel P(2014)On the complex moments of symmetric power Compos. Math. 150 729-748
[4]  
Clozel L(2015)-functions ar Ann. Math. 181 303-359
[5]  
Thorne JA(2015)Level-raising and symmetric power functoriality. I Arch. Math. 105 413-424
[6]  
Clozel L(1991)Level-raising and symmetric power functoriality. II Math. Proc. Cambridge Philos. Soc. 110 337-351
[7]  
Thorne JA(1995)Simultaneous sign change of Fourier-coefficients of two cusp forms Internat. Math. Res. Notices IMRN 6 279-308
[8]  
Gun S(2007)Effective mean value estimates for complex multiplicative functions Int. J. Number Theory 3 355-363
[9]  
Kohnen W(1981)Siegel zeros and cusp forms Am. J. Math. 103 499-558
[10]  
Rath P(1981)The first sign change of Hecke eigenvalue Am. J. Math. 103 777-815