Hardy-Type Inequalities for the Jacobi Weight with Applications

被引:0
作者
R. G. Nasibullin
机构
[1] Kazan (Volga Region) Federal University,
来源
Siberian Mathematical Journal | 2022年 / 63卷
关键词
Hardy-type inequality; Poincaré–Friedrichs inequality; additional term; Jacobi weight; analytic function; univalence; Schwartz derivative; 517.51:517.54;
D O I
暂无
中图分类号
学科分类号
摘要
We prove some new Hardy-type inequalities for the Jacobi weight function. The resulting inequalities contain additional terms with the weight functions characteristic of Poincaré–Friedrichs inequalities. One of the constants in the inequality is unimprovable. We apply the inequalities to extending the available classes of univalent analytic functions in simply-connected domains and find univalence conditions in terms of estimates for the Schwartz derivative of an analytic function on the unit disk, the exterior of the unit disk, and the right half-plane.
引用
收藏
页码:1121 / 1139
页数:18
相关论文
共 61 条
  • [1] Prokhorov D(2018)Hardy–Steklov integral operators Proc. Steklov Inst. Math. 300 1-112
  • [2] Stepanov V(2002)Weighted integral inequalities with the geometric mean operator J. Inequal. Appl. 7 727-746
  • [3] Ushakova E(2018)On Hardy inequality in variable Lebesgue spaces with mixed norm Indian J. Pure Appl. Math. 49 765-782
  • [4] Persson L(2011)Sharp Hardy-type inequalities with Lamb’s constants Bull. Belg. Math. Soc. Simon Stevin. 18 723-736
  • [5] Stepanov V(2014)A geometric description of domains whose Hardy constant is equal to 1/4 Izv. Math. 78 855-876
  • [6] Bandaliyev R(2019)Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition St. Petersburg Math. J. 30 161-179
  • [7] Serbetci A(2006)Hardy-type inequalities on planar and spatial open sets Proc. Steklov Inst. Math. 255 2-12
  • [8] Hasanov S(1998)Hardy’s inequalities revisited Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 217-237
  • [9] Avkhadiev F(2006)On a question of Brezis and Marcus Calc. Var. Partial Differential Equations 25 491-501
  • [10] Wirths KJ(2002)A geometrical version of Hardy’s inequality J. Funct. Anal. 189 539-548