Continuum Schroedinger Operators for Sharply Terminated Graphene-Like Structures

被引:0
作者
C. L. Fefferman
M. I. Weinstein
机构
[1] Princeton University,Department of Mathematics
[2] Columbia University,Department of Applied Physics and Applied Mathematics and Department of Mathematics
来源
Communications in Mathematical Physics | 2020年 / 380卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the single electron model of a semi-infinite graphene sheet interfaced with the vacuum and terminated along a zigzag edge. The model is a Schroedinger operator acting on L2(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R}^2)$$\end{document}: Hedgeλ=-Δ+λ2V♯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\lambda _{\mathrm{edge}}=-\Delta +\lambda ^2 V_\sharp $$\end{document}, with a potential V♯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_\sharp $$\end{document} given by a sum of translates an atomic potential well, V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_0$$\end{document}, of depth λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^2$$\end{document}, centered on a subset of the vertices of a discrete honeycomb structure with a zigzag edge. We give a complete analysis of the low-lying energy spectrum of Hedgeλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\lambda _{\mathrm{edge}}$$\end{document} in the strong binding regime (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} large). In particular, we prove scaled resolvent convergence of Hedgeλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\lambda _{\mathrm{edge}}$$\end{document} acting on L2(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbb {R}^2)$$\end{document}, to the (appropriately conjugated) resolvent of a limiting discrete tight-binding Hamiltonian acting in l2(N0;C2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2(\mathbb {N}_0;\mathbb {C}^2)$$\end{document}. We also prove the existence of edge states: solutions of the eigenvalue problem for Hedgeλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^\lambda _{\mathrm{edge}}$$\end{document} which are localized transverse to the edge and pseudo-periodic plane-wave like parallel to the edge. These edge states arise from a “flat-band” of eigenstates of the tight-binding model.
引用
收藏
页码:853 / 945
页数:92
相关论文
共 170 条
  • [1] Ablowitz MJ(2012)On tight-binding approximations in optical lattices Stud. Appl. Math. 129 362-388
  • [2] Curtis CW(2009)Conical diffraction in honeycomb lattices Phys. Rev. A 79 053830-989
  • [3] Zhu Y(2019)Cantor spectrum of graphene in magnetic fields Invent. Math. 218 9791041-1147
  • [4] Ablowitz MJ(2019)Magnetic oscillations in a model of graphene Commun. Math. Phys. 367 941-214
  • [5] Nixon SD(2018)Symmetry and Dirac points in graphene spectrum J. Spectr. Theory 8 1099-298
  • [6] Zhu Y(2017)Snowflake topological insulator for sound waves Phys. Rev. B 97 020102-256
  • [7] Becker S(1990)An infinite number of wells in the semi-classical limit Asymptot. Anal. 3 189-31
  • [8] Han R(1990)Coulombic potentials in the semi-classical limit Lett. Math. Phys. 19 285-301
  • [9] Jitomirskaya S(1994)équations de hartree-fock dans l’approximation du tight-binding Helv. Phys. Acta 67 237-109
  • [10] Becker S(1996)équations de schrödinger avec potentiels singuliers et á longue portée dans l’approximation de liaison forte Ann. Inst. H. Poincaré Phys. Théor. 64 1-123