Bianchi type-III Tsallis holographic dark energy model in Saez–Ballester theory of gravitation

被引:0
作者
M. Vijaya Santhi
Y. Sobhanbabu
机构
[1] Andhra University,Department of Applied Mathematics
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter ωt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _t$$\end{document}, squared sound speed vs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_s^2$$\end{document}, om-diagnostic parameter Om(z) and scalar field ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}) and well-known cosmological planes (namely ωt-ωt′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _t-\omega _t^{'}$$\end{document} plane, where ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} denotes derivative with respect to ln(a) and statefinders (r-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r-s$$\end{document}) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.
引用
收藏
相关论文
共 84 条
  • [21] Nojiri S(2016)undefined Astrophys. Space. ScI. 361 142-undefined
  • [22] Odintsov SD(2017)undefined Can. J. Phys. 95 381-undefined
  • [23] Medved AJM(2017)undefined Int. J. Theor. Phys. 56 362-undefined
  • [24] Bisabr Y(2017)undefined Can. J. Phys. 95 179-undefined
  • [25] Reddy DRK(2017)undefined Eur. Phys. J. Plus 132 388-undefined
  • [26] Santhi MV(2017)undefined Int. J. Pure Appl. Math. 117 383-undefined
  • [27] Santhi MV(2018)undefined Results Phys. 10 469-undefined
  • [28] Santhi MV(2018)undefined Eur. Phys. J. C 78 619-undefined
  • [29] Santhi MV(2018)undefined Astrophys. Space Sci. 363 207-undefined
  • [30] Tripathy SK(2010)undefined Gen. Relativ. Gravit. 42 813-undefined