Bianchi type-III Tsallis holographic dark energy model in Saez–Ballester theory of gravitation

被引:0
作者
M. Vijaya Santhi
Y. Sobhanbabu
机构
[1] Andhra University,Department of Applied Mathematics
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter ωt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _t$$\end{document}, squared sound speed vs2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_s^2$$\end{document}, om-diagnostic parameter Om(z) and scalar field ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}) and well-known cosmological planes (namely ωt-ωt′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _t-\omega _t^{'}$$\end{document} plane, where ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$'$$\end{document} denotes derivative with respect to ln(a) and statefinders (r-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r-s$$\end{document}) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.
引用
收藏
相关论文
共 84 条
  • [1] Riess AG(1998)undefined Astron J. 116 1009-undefined
  • [2] Perlmutter S(1998)undefined Nature 391 51-undefined
  • [3] Bennett CL(2003)undefined Astrophys. J. Suppl. 148 1-undefined
  • [4] Spergel DN(2003)undefined Astrophys. J. Suppl. 148 175-undefined
  • [5] Carroll SM(2001)undefined Living Rev. Relativ. 4 1-undefined
  • [6] Padmanabhan T(2003)undefined Phys. Rep. 380 235-undefined
  • [7] Brans C(1961)undefined Phys. Rev. 124 925-undefined
  • [8] Dicke RH(1986)undefined Phys. Lett. A 113 467-undefined
  • [9] Saez D(1995)undefined J. Math. Phys. 36 6377-undefined
  • [10] Ballester VJ(1999)undefined Phys. Rev. Lett. 82 4971-undefined