Let TTk denote the transitive tournament on k vertices. Let TT(h,k) denote the graph obtained from TTk by replacing each vertex with an independent set of size h≥1. The following result is proved: Let c2=1/2, c3=5/6 and ck=1−2−k−log k for k≥4. For every ∈>0 there exists N=N(∈,h,k) such that for every undirected graph G with n>N vertices and with δ(G)≥ckn, every orientation of G contains vertex disjoint copies of TT(h,k) that cover all but at most ∈n vertices. In the cases k=2 and k=3 the result is asymptotically tight. For k≥4, ck cannot be improved to less than 1−2−0.5k(1+o(1)).
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Grzesik, Andrzej
Janzer, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Math, Zurich, SwitzerlandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Janzer, Oliver
Nagy, Zoltan Lorant
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, MTA ELTE Geometr & Algebra Combinator Res Grp, Budapest, HungaryJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland