Sampling Theorem Based Fourier–Legendre Transform

被引:1
|
作者
Kuwata S. [1 ]
Kawaguchi K. [2 ]
机构
[1] Graduate School of Information Sciences, Hiroshima City University, Asaminami-ku, 731-3194, Hiroshima
[2] Department of System Engineering, Hiroshima City University, Asaminami-ku, 731-3194, Hiroshima
关键词
Addition theorem; Fourier–Legendre transform; Jacobi polynomial; Sampling theorem;
D O I
10.1007/s40819-020-00844-z
中图分类号
学科分类号
摘要
The product of any number of Legendre functions, under a restricted domain, can be expanded by the corresponding Legendre polynomials, with the coefficient being the sinc function. While an analogous expansion can be made for any number of Gengenbauer functions, it is not allowed for more than two Jacobi functions. To obtain such an expansion, the sampling theorem is of great availability. © 2020, Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [1] Unlimited Sampling Theorem Based on Fractional Fourier Transform
    Zhao, Hui
    Li, Bing-Zhao
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [2] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2011, 17 : 240 - 264
  • [3] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [4] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [5] Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2008, 14 : 538 - 567
  • [6] Sampling theorem associated with quasi-fourier transform
    Wang, Qiao
    Wu, Lenan
    IEEE Transactions on Signal Processing, 2000, 48 (03)
  • [7] Sampling theorem for two dimensional fractional Fourier transform
    Zayed, Ahmed, I
    SIGNAL PROCESSING, 2021, 181
  • [9] Sampling theorem and discrete Fourier transform on the Riemann sphere
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (04) : 538 - 567
  • [10] A sampling theorem associated with quasi-fourier transform
    Wang, Q
    Wu, LN
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (03) : 895 - 895