Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras

被引:0
作者
Fulin Chen
Shaobin Tan
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2011年 / 6卷
关键词
Fermionic and bosonic representation; graded Lie algebra; unitary representation; 17B65; 17B67; 17B70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the fermionic and bosonic representations for a class of BC-graded Lie algebras coordinatized by skew Laurent polynomial rings. This generalizes the fermionic and bosonic constructions for the affine Kac-Moody algebras of type AN(2).
引用
收藏
页码:607 / 628
页数:21
相关论文
共 24 条
[1]  
Allison B. N.(2000)Central extensions of Lie algebras graded by finite root systems Math Ann 316 499-527
[2]  
Benkart G.(1996)Lie algebras graded by finite root systems and intersection matrix algebras Invent Math 126 1-45
[3]  
Gao Y.(1992)Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy Invent Math 108 323-347
[4]  
Benkart G.(2007)-graded Lie algebras arising from fermionic representations J Alg 308 545-566
[5]  
Zelmanov E.(1985)Classical affine Lie algebras Adv Math 56 117-172
[6]  
Berman S.(1980)Spinor representation of affine Lie algebras Proc Natl Acad Sci USA 77 6303-6306
[7]  
Moody R. V.(1981)Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory J Funct Anal 44 259-327
[8]  
Chen H.(2000)Vertex operators arising from the homogeneous realization for Comm Math Phys 211 23-66
[9]  
Gao Y.(2002)Fermionic and bosonic representations of the extended affine Lie algebra Canada Math Bull 45 623-633
[10]  
Feingold A. J.(2010)Fermionic realization of toroidal Lie algebras of classical types J Alg 324 183-194