Analogues of the Hurwitz Formulas for Level 2 Eisenstein Series

被引:0
作者
Hirofumi Tsumura
机构
[1] Tokyo Metropolitan University,Department of Mathematics and Information Sciences
来源
Results in Mathematics | 2010年 / 58卷
关键词
Primary 11M41; Secondary 11M99; Eisenstein series; Hurwitz numbers; hyperbolic functions; Lemniscate constant; Riemann zeta-function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider certain double series of Eisenstein type involving hyperbolic functions, which can be regarded as analogues of the level 2 Eisenstein series. We prove some evaluation formulas for these series at positive integers which are analogues of both the Hurwitz formulas for the level 2 Eisenstein series and the classical results given by Cauchy, Lerch, Mellin and Ramanujan.
引用
收藏
页码:365 / 378
页数:13
相关论文
共 16 条
  • [11] Rieger G.J.(1977)Note on summation of series J. Reine Angew. Math. 296 212-252
  • [12] Tsumura H.(2002)Eine Bemerkung über die Hurwitzschen Zahlen Acta Arith. 105 239-405
  • [13] Tsumura H.(2007)On some combinatorial relations for Tornheim’s double series Math. Proc. Camb. Philos. Soc. 142 395-93
  • [14] Tsumura H.(2008)On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function Bull. Lond. Math. Soc. 40 85-247
  • [15] Tsumura H.(2009)On certain analogues of Eisenstein series and their evaluation formulas of Hurwitz type Bull. Austral. Math. Soc. 79 239-225
  • [16] Watson G.N.(1929)Evaluation of certain classes of Eisenstein type series J. Lond. Math. Soc. 3 216-undefined