A structural transformation from p-π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} to MSVL

被引:0
作者
Ling Luo
Zhenhua Duan
Cong Tian
Xiaobing Wang
机构
[1] Xidian University,ICTT and ISN Lab
关键词
Process algebra; Temporal logic; -calculus; MSVL; Verification;
D O I
10.1007/s10878-014-9779-0
中图分类号
学科分类号
摘要
This paper presents a structural transformation approach from p-π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} processes to MSVL programs. To this end, channel and communication primitives are firstly defined in MSVL. Further, based on these definitions, a mapping function F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F }$$\end{document} which transforms bounded p-π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} processes into MSVL programs is formalized. Moreover, the soundness of the transformation is proved. By the transformation, p-π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} can provide a mechanism to model, simulate and verify concurrent time-dependent systems by means of the techniques of MSVL. Finally, a case study is given to illustrate how the transformation can be used in practice.
引用
收藏
页码:308 / 329
页数:21
相关论文
共 13 条
[1]  
Bergstra J(1985)Algebra of communicating processes with abstraction J Theor Comput Sci 37 77-121
[2]  
Klop J(2008)A decision procedure for propositional projection temporal logic with infinite models Acta Inform 45 43-78
[3]  
Duan Z(1973)Scheduling algorithms for multiprogramming in a hard-real-time environment J Assoc Comput Mach 20 46-61
[4]  
Tian C(2012)An extended Proc CNSI 2012 632-637
[5]  
Zhang L(1955)-calculus Pac J Math 5 285-309
[6]  
Liu C(2010)A lattice-theoretical fixpoint theorem and its applications Math Struct Comput Sci 20 865-914
[7]  
Layland J(undefined)Automatic verification of finite state concurrent system using temporal logic specification undefined undefined undefined-undefined
[8]  
Luo L(undefined)undefined undefined undefined undefined-undefined
[9]  
Duan Z(undefined)undefined undefined undefined undefined-undefined
[10]  
Tarski A(undefined)undefined undefined undefined undefined-undefined