UDP-d-galactose synthesis by UDP-glucose 4-epimerase 4 is required for organization of the trans-Golgi network/early endosome in Arabidopsis thaliana root epidermal cells

被引:0
|
作者
Sheliang Wang
Toshiaki Ito
Masataka Uehara
Satoshi Naito
Junpei Takano
机构
[1] Hokkaido University,Graduate School of Agriculture
[2] Hokkaido University,Research Faculty of Agriculture
[3] Hokkaido University,Graduate School of Life Science
[4] Technology Development Center of Sumika Agrotech Co.,undefined
[5] LTD,undefined
来源
Journal of Plant Research | 2015年 / 128卷
关键词
UDP-; -galactose; UDP-; -glucose 4-epimerase; Endomembrane organization; TGN/EEs;
D O I
暂无
中图分类号
学科分类号
摘要
Endomembrane organization is essential for cell physiology. We previously identified an Arabidopsis thaliana mutant in which a plasma membrane (PM) marker GFP-NIP5;1 and trans-Golgi network/early endosome (TGN/EE) markers were accumulated in intracellular aggregates in epidermal cells of the root elongation zone. The mutant was identified as an allele of UDP-glucose epimerase 4 (UGE4)/root hair defective 1/root epidermal bulgar 1, which was previously described as a mutant with swollen root epidermal cells and has an altered sugar composition in cell wall polysaccharides. Importantly, these defects including aggregate formation were restored by supplementation of d-galactose in the medium. These results suggested that UDP-d-galactose synthesis by UGE4 is important for endomembrane organization in addition to cell wall structure. Here, we further investigated the nature of the aggregates using various markers of endomembrane compartments and BOR1-GFP, which traffics from PM to vacuole in response to high-B supply. The markers of multi-vesicular bodies/late endosomes (MVB/LEs) and BOR1-GFP were strongly accumulated in the intracellular aggregates, while those of the endoplasmic reticulum (ER), the vacuolar membrane, and the Golgi were only slightly affected in the uge4 mutant. The abnormal localizations of these markers in the uge4 mutant differed from the effects of inhibitors of actin and microtubule polymerization, although they also affected endomembrane organization. Furthermore, electron microscopy analysis revealed accumulation of abnormal high-electron-density vesicles in elongating epidermal cells. The abnormal vesicles were often associated or interconnected with TGN/EEs and contained ADP-ribosylation factor 1, which is usually localized to the Golgi and the TGN/EEs. On the other hand, structures of the ER, Golgi apparatus, and MVB/LEs were apparently normal in uge4 cells. Together, our data indicate the importance of UDP-d-galactose synthesis by UGE4 for the organization and function of endomembranes, especially TGN/EEs, which are a sorting station of the secretory and vacuolar pathways.
引用
收藏
页码:863 / 873
页数:10
相关论文
共 3 条
  • [1] UDP-D-galactose synthesis by UDP-glucose 4-epimerase 4 is required for organization of the trans-Golgi network/early endosome in Arabidopsis thaliana root epidermal cells
    Wang, Sheliang
    Ito, Toshiaki
    Uehara, Masataka
    Naito, Satoshi
    Takano, Junpei
    JOURNAL OF PLANT RESEARCH, 2015, 128 (05) : 863 - 873
  • [2] Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of Arabidopsis thaliana
    Barber, Christine
    Rosti, Johannes
    Rawat, Arun
    Findlay, Kim
    Roberts, Keith
    Seifert, Georg J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (25) : 17276 - 17285
  • [3] UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana
    Rosti, Johannes
    Barton, Christopher J.
    Albrecht, Sandra
    Dupree, Paul
    Pauly, Markus
    Findlay, Kim
    Roberts, Keith
    Seifert, Georg J.
    PLANT CELL, 2007, 19 (05): : 1565 - 1579